
Chapter 1
Foundation

1.1 Introduction

We start with the variational principles of statics and Betti’s theorem,

• the principle of virtual displacements
• the principle of conservation of energy
• the principle of virtual forces
• Betti’s theorem

Since they form the core of modern structural analysis. As diverse as these prin-
ciples and theorems are, technically they are all based on one equation: Integration
by parts.

1.1.1 Integration by Parts

The integration by parts formula

∫ l

0
u′ δu dx = [u δu]l0 −

∫ l

0
u δu′ dx , (1.1)

derived from

∫ l

0
(u δu)′ dx =

∫ l

0
(u′ δu + u δu′) dx = [u δu]l0 , (1.2)

can be written as a “zero sum”,
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2 1 Foundation

I (u, δu) =
∫ l

0
u′ δu dx − [u δu]l0 +

∫ l

0
u δu′ dx = 0 , (1.3)

since this invariant form better expresses the built-in duality: The equation is zero
for all pairs of functions in C1(0, l), like u = sin(x) and δu = cos(x).

1.1.2 Principle of Virtual Displacements

Zero sums are easy to deal with. When two forces ± f pull at the two ends of a bar
as in Fig. 1.1a, the zero sum of the two forces,

− f + f = 0 , (1.4)

can be multiplied with any number δu without changing the mathematics

δu · (− f + f ) = −δu · f + δu · f = 0 , (1.5)

which means we can slide the bar forwards and backwards on the table and each
time the work done by the two forces is zero. This is an application of the principle
of virtual displacements.

Fig. 1.1 Virtual displacement, a of an unrestrained rigid bar, and b an elastic bar fixed at both ends.
For each admissible δu the two integrals have the same value
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Granted, the logic is remarkably simple. If an equation is zero

Eq = 0 , (1.6)

the product of the equation with any number δu is zero as well

δu · Eq = 0 , (1.7)

and this holds also true for functions, see Fig. 1.1b, since if u(x) satisfies the differ-
ential equation

−E A u′′(x) − p(x) = 0 0 < x < l , (1.8)

then

∫ l

0
(−E A u′′ − p) δu dx = 0 , (1.9)

or after integration by parts, if δu(0) = δu(l) = 0,

∫ l

0

N δN

E A
dx =

∫ l

0
p δu dx (1.10)

where N = E A u′ is the normal force.

1.1.3 Betti’s Theorem

When two numbers u1 and u2 solve the two “twin” equations (the 3 makes them
twins)

3 · u1 = 12 3 · u2 = 18 , (1.11)

and we multiply each twin with the other solution,

u2 · 3 · u1 = 12 · u2 u1 · 3 · u2 = 18 · u1 , (1.12)

then the left sides are the same, and so also the right sides must be the same, see
Fig. 1.2,

W1,2 = 12 · x2 = 18 · x1 = W2,1 . (1.13)
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Fig. 1.2 Two springs and
application of Betti’s
theorem, stiffness k = 3

This is Betti’s theorem: The reciprocal external work of two equilibrium states is the
same. It is a universal property of self-adjoint operators and symmetric matrices. If
u1 and u2 are the nodal displacements of a truss under two different loads

K u1 = f 1 K u2 = f 2 , (1.14)

the left sides can be made the same

uT
2 K u1 = uT

2 f 1 uT
1 K u2 = uT

1 f 2 , (1.15)

and so also the right sides must be the same

uT
2 f 1 = uT

1 f 2 . (1.16)

1.1.4 Influence Functions

To solve the equation

3 · x = 12 (1.17)

we divide the right side by the number 3, or—as we could say as well—we multiply
the right sidewith the inverse g = 1/3, the response to a “point load”, a “Dirac delta”,

3 · g = 1 , (1.18)

since this equation implies that

x = g · 12 = 1

3
· 12 = 4 (1.19)
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Fig. 1.3 If a force f = 1 stretches the spring by g = 1/k units, a force f will stretch the spring
by u = f · g units

is the solution to (1.17), see Fig. 1.3. This is the technique of influence functions or
Green’s functions.

To calculate the nodal displacement ui of a truss in this way, we apply a single
force fi = 1 at the node, determine the corresponding nodal displacements of the
truss, the vector gi ,

K gi = ei (i-th unit vector) , (1.20)

and form the scalar product of gi and f

ui = eTi u = eTi K−1 f = gTi f . (1.21)

In a beam, instead, we would place a single force P = 1 at the source point x ,
determine the response G(y, x) of the beam, see Fig. 1.4, and integrate

w(x) =
∫ l

0
G(y, x) p(y) dy . (1.22)

1.1.5 Identities

In statics we solve scalar equations

k u = f , (1.23)
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Fig. 1.4 Beam and influence function for the deflection at the midpoint

or systems of equations

K u = f , (1.24)

or differential equations

E Iw I V (x) = p(x) . (1.25)

To each of the operators on the left belongs a simple identity

B (u, δu) = δu k u − u k δu = 0 (1.26)

B (u, δu) = δuT K u − uT K δu = 0 (1.27)

G (w, δw) =
∫ l

0
E Iw I V δw dx + [V δw − M δw′]l0 −

∫ l

0

M δM

E I
dx = 0 .

(1.28)

Only this last identity requires a warning, since it is based on integration by parts,
and so the functions w and δw must be from C4(0, l) and C2(0, l) respectively for
it to be true, since in (1.28) we integrate two times.
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Fig. 1.5 Check of the
equilibrium of the beam with
Green’s first identity by
applying the virtual
displacement δw = 1,
G (w, 1) =
p · l + V (l) − V (0) = 0

The energy principles of statics are based on Green’s first and second identity
(integration by parts)

This is why the essential formulations of statics and mechanics are dual formu-
lations, are “stereo”, not “mono”. The prime mathematical operation in mechanics
is the scalar product. The ubiquitous for all δu of the variational principles has its
root in the scalar product, see Fig. 1.5.

1.2 Green’s Identities

To continue in a more systematic and orderly fashion we will list in the following the
major differential equations of frame analysis, and formulate the associated identities
as for example the identity of a bar

∫ l

0
−E A u′′ δu dx = [(−E A u′) δu]l0 −

∫ l

0
−E A u′ δu′ dx . (1.29)

The principal tool, integration by parts, is like climbing stairs (δu = 1)

∫ b

a
f ′(x) dx = f (b) − f (a) , (1.30)

since with each step dx in horizontal direction the gain in height is d f = f ′(x) dx
and so at the end the total is f (b) − f (a), see Fig. 1.6.

The staircase formula (1.30) is the fundamental theorem of calculus. It implies
that the integral of the normal force N (x) = E A u′(x) in a bar, fixed at both ends, is
zero, see Fig. 1.7a,

∫ l

0
E A u′(x) dx = [E A u]l0 = E A (u(l) − u(0)) = 0 , (1.31)
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Fig. 1.6 On climbing stairs we sense the fundamental theorem of differential and integral calculus

Fig. 1.7 The integrals of the normal force N and the bending moment M are zero

and the mean value of the bending moment M(x) = −E I w′′(x) in a beam, clamped
on both sides, see Fig. 1.7b, is zero as well

∫ l

0
−E I w′′(x) dx = −E I (w′(l) − w′(0)) = 0 . (1.32)

For partial derivatives integration by parts reads

∫
Ω

u,i δv dΩ =
∫

Γ

u ni δv ds −
∫

Ω

u δv,i dΩ , (1.33)

where Γ is the edge of the domain Ω , ni is the i-th component of the normal vector
n (length |n| = 1) on Γ and u,i = ∂u/∂xi is the derivative with respect to xi . If we
let δv = 1 Eq. (1.33) becomes
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∫
Ω

u,i dΩ =
∫

Γ

u ni ds , (1.34)

and so, if a plate Ω is fixed along its edge Γ , ux = uy = 0, the mean of the stress

σxx = E (εxx + ν εyy) = E (ux ,x +ν uy,y ) (1.35)

(and of σyy as well) is zero, since

∫
Ω

E (ux ,x +ν uy,y ) dΩ =
∫

Γ

E (ux nx + ν uy ny) ds = 0 . (1.36)

1.2.1 Longitudinal Displacement u(x) of a Bar

−E A u′′(x) = p(x) (1.37)

G (u, δu) =
∫ l

0
−E A u′′(x) δu(x) dx + [N δu]l0︸ ︷︷ ︸

external virt. work

−
∫ l

0

N δN

E A
dx

︸ ︷︷ ︸
internal virt. work

= 0 , (1.38)

where N = E A u′ is the normal force, see Fig. 1.8.
If E A(x) is a function of x , the differential equation of the bar is−(E A(x) u′)′ =

p(x) and then

∫ l

0
−(E A(x) u′)′ δu dx = [(−E A(x) u′) δu]l0 −

∫ l

0
−E A(x) u′ δu′ dx (1.39)

which repeats the identity (1.38), because the definition of N = E A(x) u′ does not
change

G (u, δu) =
∫ l

0
−(E A(x) u′)′ δu(x) dx + [N δu]l0 −

∫ l

0

N δN

E A
dx = 0 .

(1.40)

Since −N ′ = p is the same as −(E A(x) u′)′ = p, we can also write

∫ l

0
−N ′ δu dx = [N δu]l0 −

∫ l

0
−N δu′ dx . (1.41)
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Fig. 1.8 Structural elements

When the longitudinal displacement must work against some friction (c),

−E A u′′(x) + c u(x) = p(x) , (1.42)

the identity reads

G (u, δu) =
∫ l

0
(−E A u′′(x) + c u(x)) δu(x) dx + [N δu]l0︸ ︷︷ ︸

δWe

−
∫ l

0
(
N δN

E A
+ c u δu) dx

︸ ︷︷ ︸
δWi

= 0 . (1.43)
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1.2.2 Shear Deformation wS(x) of a Beam

−GAw′′
s (x) = p(x) (1.44)

G (ws, δws) =
∫ l

0
−GAw′′

s (x) δws(x) dx + [V δws]l0︸ ︷︷ ︸
δWe

−
∫ l

0

V δV

GA
dx

︸ ︷︷ ︸
δWi

= 0 ,

(1.45)

with V = GAw′
s as the shear force, and GA as the shear modulus.

When the beam sits on an elastic foundation (c),

−GAw′′
s (x) + cws(x) = p(x) , (1.46)

the identity has the form

G (ws, δws) =
∫ l

0
(−GAw′′

s (x) + cws(x)) δws(x) dx + [V δws]l0︸ ︷︷ ︸
δWe

−
∫ l

0
(
V δV

GA
+ cws δws)dx

︸ ︷︷ ︸
δWi

= 0 . (1.47)

1.2.3 Deflection w of a Rope

−H w′′(x) = p(x) H = horizontal prestress in the rope (1.48)

with V (x) = H w′(x) as the shear force in the rope

G (w, δw) =
∫ l

0
−H w′′(x) δw(x) dx + [V δw]l0︸ ︷︷ ︸

δWe

−
∫ l

0

V δV

H
dx

︸ ︷︷ ︸
δWi

= 0 . (1.49)
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1.2.4 Deflection w of a Beam

E I w I V (x) = p(x) (1.50)

G (w, δw) =
∫ l

0
E I w I V (x) δw dx + [V δw − M δw′]l0︸ ︷︷ ︸

δWe

−
∫ l

0

M δM

E I
dx

︸ ︷︷ ︸
δWi

= 0 ,

(1.51)

with M(x) = −E I w′′(x) and V (x) = −E I w′′′(x).
If E I (x) is a function of x , the beam equation is (E I (x) w′′)′′ = p(x), and so

∫ l

0
(E I (x) w′′)′′ δw dx =[(E I (x) w′′)′ δw − E I (x) w′′ δw′]l0

+
∫ l

0
E I (x) w′′ δw′′ dx , (1.52)

where M = −E I (x) w′′ and V = −(E I (x) w′′)′ and this means

G (w, δw) =
∫ l

0
(E I (x) w′′)′′ δw dx + [V δw − M δw′]l0 −

∫ l

0

M δM

E I
dx = 0 .

(1.53)

Here too we can, since −M ′′ = p is the same as (E I (x)w′′)′′ = p, write

∫ l

0
−M ′′ δw dx = −[M ′ δw]l0 +

∫ l

0
M ′ δw′ dx . (1.54)

1.2.5 Deflection w of a Beam, 2nd Order Theory

E I w I V (x) + (D(x) w′(x))′ = pz(x) D(x) = P +
∫ x

0
px (y) dy (1.55)

G (w, δw) =
∫ l

0
(E I w I V (x) + (D(x) w′(x))′) δw dx + [T δw − M δw′]l0︸ ︷︷ ︸

δWe

−
∫ l

0
(
M δM

E I
− D(x) w′(x) δw′(x)) dx

︸ ︷︷ ︸
δWi

= 0 (1.56)
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where T is the transverse force

T (x) = −E I w′′′(x) − D(x) w′(x) = V (x) − D(x) w′(x) . (1.57)

The D is the compressive force and px (x) and pz(x) are distributed forces in axial
direction and perpendicular to it.

1.2.6 Beam on an Elastic foundation

E I w I V (x) + cw(x) = p(x) (1.58)

and

G (w, δw) =
∫ l

0
(E I w I V (x) + cw(x)) δw(x) dx + [V δw − M δw′]l0︸ ︷︷ ︸

δWe

−
∫ l

0
(
M δM

E I
+ cw(x) δw(x)) dx

︸ ︷︷ ︸
δWi

= 0 . (1.59)

1.2.7 Tensile Chord Bridge

Imagine a beam through which runs a prestressed rope (tendon), so that the beam
and the rope jointly carry the distributed load p

E I w I V (x) − H w′′(x) = p(x) H = prestress , (1.60)

and Green’s first identity reads

G (w, δw) =
∫ l

0
(E I w I V (x) − H w′′(x)) δw(x) dx + [V δw − M δw′]l0︸ ︷︷ ︸

δWe

−
∫ l

0
(
M δM

E I
+ H w′(x) δw′(x)) dx

︸ ︷︷ ︸
δWi

= 0 , (1.61)

with V = −E I w′′′(x) + H w′(x).
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1.2.8 Torsion

The differential equation of St. Venant’s torsion

−G IT ϑ ′′ = mx (1.62)

G (ϑ, δϑ) =
∫ l

0
−G IT ϑ ′′(x) δϑ(x) dx + [MT δϑ]l0︸ ︷︷ ︸

δWe

−
∫ l

0

MT δMT

G IT
dx

︸ ︷︷ ︸
δWi

= 0 ,

(1.63)

and warping torsion

E Iω ϑ I V − G IT ϑ ′′ = mx (1.64)

G (ϑ, δϑ) =
∫ l

0
(E Iω ϑ I V (x) − G IT ϑ ′′(x)) δϑ(x) dx + [MT δϑ − Mω δϑ ′]l0︸ ︷︷ ︸

δWe

−
∫ l

0
(
Mω δMω

E Iω
+ G IT ϑ ′(x) δϑ ′(x)) dx

︸ ︷︷ ︸
δWi

= 0 , (1.65)

with

Mω = −E Iω ϑ ′′(x) MT = −E Iω ϑ ′′′(x) + G IT ϑ ′(x) (1.66)

repeat the patterns from above.

1.3 Variational Principles of Structural Analysis

In all identities, as for example the identity of a rope,

G (w, δw) =
∫ l

0
−H w′′(x) δw(x) dx + [V δw]l0 −

∫ l

0

V δV

H
dx = 0 , (1.67)

we equate the external virtual work with the internal strain energy. So, each term
is an energy, is the scalar product of a force [N] and a displacement [m] and the
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bottom line is: The sum is always zero, the account is always balanced. This simple
observation is the key to the variational and energy principles of statics.

Principle of Virtual Displacements

G (w, δw) = δWe − δWi = 0 (1.68)

Conservation of Energy

If the second entry is identical with the first, δw = w, the identities formulate the
principle of conservation of energy

1

2
G (w,w) = We − Wi = 0 (1.69)

The external eigenwork is stored as internal energy (this needs the factor 1/2).

Principle of Virtual Forces

If the test function δw∗ takes the first spot, and—as is tradition—is then written with
an asterisk, it is the principle of virtual forces

G (δw∗, w) = δW ∗
e − δW ∗

i = 0 (1.70)

Betti’s Theorem

When we formulate Green’s first identity twice, but switch the positions of w and ŵ

in the second round, and subtract the two equations, 0 − 0 = 0, we arrive at Green’s
second identity

B (w, ŵ) =G (w, ŵ) −G (ŵ, w) =
∫ l

0
E I w I V (x) ŵ(x) dx + [V ŵ − M ŵ′]l0︸ ︷︷ ︸

W1,2

− [w V̂ − w′M̂]l0 −
∫ l

0
w(x) E I ŵ I V (x) dx

︸ ︷︷ ︸
W2,1

= 0 , (1.71)

or Betti’s theorem: The reciprocal external work of two deflections w and ŵ is the
same.

B (w, ŵ) = W1,2 − W2,1 = 0 (1.72)
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Principle of Minimum Potential Energy

The potential energy of a hinged beam—in classical and modern notation side by
side—is the expression

Π(w) = 1

2

∫ l

0

M2

E I
dx −

∫ l

0
p(x) w(x) dx = 1

2
a(w,w) − (p, w)

= 1

2
a(w,w) − 1

2
(p, w) − 1

2
(p, w) . (1.73)

If w is the deflection of the beam, E I w I V = p, Green’s first identity implies
G (w,w) = a(w,w) − (p, w) = 0, and Π(w) reduces to

Π(w) = −1

2
(p, w) = half the eigenwork × (−1) (1.74)

which means: The potential energy in the equilibrium position is negative, since
eigenwork (p, w) is always positive.

If we add an admissible virtual displacement δw, i.e. δw(0) = δw(l) = 0, to the
equilibrium position w, the potential energy will increase

Π(w + δw) = Π(w) +G (w, δw)︸ ︷︷ ︸
= 0

+ a(δw, δw)︸ ︷︷ ︸
> 0

, (1.75)

and so Π(w) must be the deepest point.

1.4 Zero Sums

Green’s first identity resembles the game played by the desert wind (= δu) with the
dried-out tumbleweed (= u), see Fig. 1.9. No matter how strong the wind blows and
how big the capers are, at the end the result always comes out zero,G (u, δu) = 0.

If we read the identity as a variational statement

G (u, δu) = 0 for all δu , (1.76)

it reminds of the path-independence of the work integral of a point mass m in the
gravitational field of the Earth, see Fig. 1.10. Near the Earth’s surface the potential
energy has the form Π = m · g · y, and if the point mass m moves on a closed path
C = {x(s), y(s)}T its total work is zero1

1Int. by parts and y(0) = y(L) with L = length of the path.
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Fig. 1.9 Tumbleweed

Fig. 1.10 Closed path

∫
C

·∇Π • ds = m · g
∫ L

0

[
0
1

]
•

[
x ′
y′

]
ds = m · g

∫ L

0
y′ ds

= m · g · (y(L) − y(0)) = 0 , (1.77)

regardless of the shape of the curve C—the path δu so to speak.
It all starts with the scalar product2 of two conjugated quantities, of a force

and a displacement,

∫ l

0
−E A u′′ δu dx = force × displacement (1.78)

and integration by parts

I (u, δu) =
∫ l

0
u′ δu dx − [u δu]l0 +

∫ l

0
u δu′ dx = 0 , (1.79)

2The superposition of two functions is called an L2-scalar product.




