
Chapter 3
Finite Elements

Structures are constantly in motion, constantly changing their shape in accor-
dance with the equilibrium conditions, and these tiny corrections are governed
by influence functions. As the market woman knows, balance means equal work,
δWlef t

e = δWright
e , means the work of the weights on both sides of the scale is the

same. Install a shear hinge in a frame and spread the hinge! You will find that the
work of the shear force and the load are the same—the market woman could have
told you beforehand.

The structure in the architect’s presentation may look pretty, but it does not “live”.
This requires finite elements. They turn the sketch into a living whole, which can
react, deform, and find its balance.

Statics is kinematics and finite elements means life, means motion.

Sure, the FE-structure still more resembles a puppet on a string than a real struc-
ture, but even this restrictedmodel has enough life in it, to give an engineer a sufficient
idea of the equilibrium position.

Once the model is constructed, the engineer displaces the nodes one by one,
ui = 1 (all else are fixed, u j = 0), remembers which forces are necessary for this
maneuver, these are the shape forces pi , and combines these loads pi so, that the
FE-load ph = ∑

i ui pi is shake-equivalent to the original load p

δWe(p, ϕi ) = δWe(ph, ϕi ) for all ϕi . (3.1)

This is the system Ku = f . It is the logic of the market woman.
What we have presented here in anticipation will certainly become clearer in the

following. At the beginning, however, we want to introduce finite elements quite
classically via the principle of minimum potential energy.
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150 3 Finite Elements

3.1 The Minimum

According to the principle of minimum potential energy the deflection of the rope in
Fig. 3.1

−H w′′(x) = p(x) w(0) = w(l) H = horizontal force in the rope , (3.2)

is the function which minimizes the potential energy of the rope

Π(w) = 1

2

∫ l

0

V 2

H
dx −

∫ l

0
p(x) w(x) dx (V = H w′) (3.3)

among all functions, which satisfy the boundary conditions, w(0) = w(l) = 0. The
set of all these functions we call V (as in Variety).

Since the set V is too large to find w(x) by a manual search, we restrict the
search to a finite dimensional subspace Vh ⊂ V and declare the function wh , which
minimizes the potential energy in this subspace, the best approximation. This is the
idea of the Ritz method.

We start by subdividing the rope into small elements. An element is a piece of
rope on which two linear functions are defined, the so-called element displacements,
and by combining the element displacements of neighboring elements, we construct
hat functions which represent unit displacements of the nodes, see Fig. 3.1.

The unit displacements of the four internal nodes form the FE-solution

wh(x) = w1 ϕ1(x) + w2 ϕ2(x) + w3 ϕ3(x) + w4 ϕ4(x) , (3.4)

and we choose the nodal displacements wi so that the FE-solution minimizes the
potential energy

Π(wh) = 1

2

∫ l

0
H (w′

h)
2 dx −

∫ l

0
pwh dx (3.5)

on Vh ⊂ V , the span of the four hat functions ϕi (x).
The function (3.4) wins the competition, if

∂Π

∂wi
= ∂

∂wi
{1
2

wT K w − f T w} = 0 i = 1, 2, 3, 4 , (3.6)

if the vector w of the nodal displacements solves the system K w = f , or

H

le

⎡

⎢
⎢
⎣

2 −1 0 0
−1 2 −1 0
0 −1 2 −1
0 0 −1 2

⎤

⎥
⎥
⎦

⎡

⎢
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⎣

w1

w2

w3

w4

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

1
1
1
1

⎤

⎥
⎥
⎦ . (3.7)



3.1 The Minimum 151

Fig. 3.1 FE-analysis of a
rope, a system and load, b
hat functions, c FE-solution
wh(x), d comparison
between w(x) and wh(x)

The elements ki j of the stiffness matrix K are the strain energy products between
the shape functions

ki j = a(ϕi , ϕ j ) =
∫ l

0
H ϕ′

i (x) ϕ′
j (x) dx =

∫ l

0

Vi Vj

H
dx , (3.8)

and the equivalent nodal forces on the right side are the integrals

fi =
∫ l

0
p(x) ϕi (x) dx . (3.9)
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If we let H = 1 and le = 1, the system (3.7) has the solution

w1 = w4 = 2 w2 = w3 = 3 , (3.10)

and so the function

wh(x) = 2 · ϕ1(x) + 3 · ϕ2(x) + 3 · ϕ3(x) + 2 · ϕ4(x) (3.11)

is on Vh the best approximation.

3.2 Why the Nodal Values of the Rope Are Exact

When we compare the FE-solution with the exact solution

w(x) = 1

2
· (5 x − x2) , (3.12)

we note that the FE-solution agrees with the exact solution at the nodes,wi = w(xi ).
The reason is the following: The FE-program computes the deflection of the rope
with the influence function

wh(x) =
∫ l

0
Gh(y, x) p(y) dy , (3.13)

only that it substitutes for the exact kernel G(y, x) an approximate kernel, Gh(y, x),
the best fit it finds in the trial space Vh . With regard to the nodes the best fit are the
original Green’s functions since they lie in Vh . This is why the nodal values are exact.

If the Green’s function G(y, x) of a point x lies in Vh , the FE-solution is exact at
this point, w(x) = wh(x).

The influence function for the deflection w(x1) at the first node is the triangle
G(y, x1) in Fig. 3.2b. Since the four shape functions can model this triangle exactly,
Gh(y, x1) = G(y, x1), the FE-solution agrees with the exact solution at the node x1

wh(x1) =
∫ l

0
G(y, x1) p(y) dy = w(x1) . (3.14)

This is true in any load case!

We do a test with p(x) = sin(πx/5). The equivalent nodal forces fi = (p, ϕi ) are

f = {0.569, 0.920, 0.920, 0.569}T , (3.15)
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Fig. 3.2 FE-model of a
rope, a shape functions, b
influence function (GF) for
w(x1), and c for the
deflection w(x) at an
intermediate point, d the
exact influence function for
w(x)

and the solution w = {1.489, 2.409, 2.409, 1.489}T of the system Kw = f are the
nodal values of the solution w(x) = 25/π2 · sin(πx/5).

But if a source point, say the point x = 1.5, is not a node, see Fig. 3.2c, the
Green’s function does not lie in Vh . In this situation the program substitutes for the
unit point load at x two half-sized point loads P = 0.5 at the neighboring nodes and
it calculates with this approximation Gh(y, x)

wh(x) =
∫ l

0
Gh(y, x) p(y) dy = 2.5 �= 2.75 = w(x) , (3.16)

but the result is then of course only an approximate value.
“But doesn’t an FE-program calculate the nodal values by solving the system

Kw = f and the values in between by interpolating between the nodes?” Correct,
but they are as large as if they had been calculated with the approximate influence
functions. This is the key point.
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Fig. 3.3 Plate, a system, b deflection under gravity load, c influence function for the deflection w

at a node x
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In 2-D and 3-D this is true as well. The nodal values of the plate in Fig. 3.3 are
the result of the superposition of the nodal Green’s functions with the load

wh(xi ) =
∫

Ω

Gh( y, xi ) p( y) dΩ y . (3.17)

Of course, the nodal values wi in the output are the solution of the system Kw = f ,
but they are just as large as if the FE-program had integrated over the whole plate,
the results are the same1

wh(xi ) = wi =
∑

j

k(−1)
i j f j =

∫

Ω

Gh( y, xi ) p( y) dΩ y . (3.18)

This is the secret, little-known law behind finite elements.

The quality of the influence functions determines the quality of the results.

3.3 Adding the Local Solution

When we calculate the deflection of the rope with an FE-program, we will not see
a polygon on the screen, but a well curved parabola, i.e. the exact curve. How does
the FE-program do this? It proceeds exactly as we said:

• It splits the rope into small elements.
• It reduces the load to the nodes and calculates the fi .
• It solves the system Kw = f .

If it stopped now, we would see a rope polygon on the screen.
But there is one more step to follow. The program calculates in each element the

so-called local solutionwloc, this is the deflection if the element is fixed at both ends,
and it adds these shapes to the FE-polygon. This is how the curve in Fig. 3.4 was
generated.

It is the same technique as in the slope deflection method, which first reduces all
loads to the nodes, finds the equilibrium position, and then adds the local solutions.

The finite elements do it the same way, since the system of equations actually is

Kw = f + d . (3.19)

The fi are the single forces, which act directly at the nodes, and the di are the
equivalent nodal forces of the distributed load in between the nodes. In the FE-
literature fi ≡ fi + di usually stands for both parts.

1Skeptical readers may integrate the right side of (3.18) by parts.
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Fig. 3.4 Rope analysis with
two elements, a load and
deflection, b FE-solution +
local solutions, c local
solutions, d unit deflection of
the central node

This way finite elements succeed, despite their limited kinematics, i.e. the use of

• piecewise linear functions for the longitudinal displacement
• cubic polynomials for the deflection

in producing the exact deformations, see Fig. 3.5.

Remark 3.1 To be precise this holds only true if E A and E I are constant, because
only then are the element shape functions ϕe

i homogeneous solutions of the differ-
ential equations. In all other cases the nodal values are not exact.

The equivalence finite elements = slope deflection method also means: It makes
no sense to further divide the individual elements of a frame into short elements.
There is no gain in accuracy.

Remark 3.2 The finite element technique is often explained with 1-D problems.
We do that too. For the finite elements to remain finite elements, we must agree that
all these demonstrations refer to the time before the local solution is added to the
FE-solution.
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Fig. 3.5 Slope deflection method and finite elements are the same, a system, b first, the distributed
load is reduced to the nodes and equilibrium at the nodes is established, and c the local solutions of
the single clamped beams d are added

3.4 Projection

We arrived at Ku = f via the principle of minimum potential energy, however the
projection of the exact solution onto the trial space Vh , the Galerkin method, leads
to the same equation.

The projection of a vector x = {x1, x2, x3}T onto the x1− x2 plane is its shadow
x′ = c1 e1 + c2 e2, see Fig. 3.6, which means the error is orthogonal to e1 and e2

(x − x′)T ei = 0 i = 1, 2 ⇒ c1 = x1 , c2 = x2 , (3.20)

and so the shadow is the vector in the plane with the shortest distance

|e| = |x − x′| = minimum (3.21)

to the tip of x.
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This idea is adopted by the Galerkin method for which the best approximation is
the function wh in Vh , whose error w − wh is orthogonal to all ϕi ,

a(w − wh, ϕi ) = 0 i = 1, 2, . . . , n . (3.22)

Because of Green’s first identity

G (w, ϕi ) =
∫ l

0
p ϕi dx − a(w, ϕi ) = 0 ⇒ fi =

∫ l

0
p ϕi dx = a(w, ϕi )

(3.23)

this is equivalent to

a(wh, ϕi ) = fi i = 1, 2, . . . , n (3.24)

or Ku = f . This implies, see (9.50), that wh has the shortest distance in the energy
metric from the exact solution w

a(w − wh, w − wh) = minimum . (3.25)

Looking at Fig. 3.6 we realize that an additional projection will not lead any further.
The shadow of the shadow x′ is x′. A projection stops after the first step. This is the
reason why it is not possible to improve the FE-solution on the same mesh, since the
difference p − ph is orthogonal to the shape functions

Fig. 3.6 The error vector e is orthogonal to the projection plane and all vectors directly above the
vector x have the same shadow
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fi =
∫ l

0
(p − ph) ϕi dx = 0 . (3.26)

Equation (3.22) is theGalerkin-orthogonality. Because of δWi = δWe it can also be
“turned inside out”, can be expressed as orthogonality in the virtual external work

(inside) a(w − wh, ϕi ) =
∫ l

0
(p − ph) ϕi dx = 0 (outside) . (3.27)

3.5 Equivalent Nodal Forces

The fi on the right side of the system Ku = f are not forces in the true sense, but
they are equivalent nodal forces, [Nm], are energy quanta2

fi =
∫ l

0
p(x) ϕi (x) dx = [N/m] · [m] · [m] = [Nm] , (3.28)

like the entries ki j , which are energy packets, for example in a bar,

ki j =
∫ l

0
E A ϕ′

i ϕ
′
j dx = [N] · [ ] · [ ] · [m] = [Nm] , (3.29)

or a beam

ki j =
∫ l

0
E I ϕ′′

i ϕ′′
j dx = [Nm2] · [1/m] · [1/m] · [m] = [Nm] . (3.30)

Each derivative means a multiplication with [m]−1.

ϕi [m] ϕ′
i = d ϕi

dx
= [ ] ϕ′′

i = d ϕ′
i

dx
= 1

[m]
. (3.31)

The nodal displacements ui are (internally) dimensionless weights

uh = ∑
i ui ϕi (x) = [ ] · [m] = [m] (3.32)

In the output they have of course the dimension of a length, as the engineer wants
to see it.

2For an alternative interpretation in beam analysis, see Sect. 9.21, page 449.
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Calcoli

The equivalent nodal forces fi serve bookkeeping purposes—like the calcoli on an
abacus. The program moves from node to node, displaces the node by one meter in
horizontal and vertical direction and makes a note on how much work is done by the
load. These notes are the fi .

A nodal force fi of 10 Nm means that the loads in the neighborhood of the node
contribute a work of 10 Nm on acting through ϕi .

All what an FE-program does in the end is, it distributes substitute loads across
the structure in such a way that these loads contribute the same amount of work as
the real load, f hi = fi .

The system K u = f is exactly this match f h = f , since the left side K u is the
vector f h of the equivalent nodal forces of the FE-solution.

In the notation of the next section the single f hi is the work done by the substitute
FE-load

ph =
∑

j

u j p j (3.33)

on acting through the nodal displacement ϕi

f hi =
∑

j

u j δWe( p j ,ϕi ) . (3.34)

3.6 Fixed End Forces

Imagine a beam element which is clamped at both ends, and which carries a dis-
tributed load p. In such a one-element beam the element shape functions ϕe

i (x) are
the nodal shape functions, and so the equivalent nodal forces are

f ei =
∫ l

0
p(x) ϕe

i (x) dx actio . (3.35)

Since the support reactions have the opposite direction

f ei × (−1) reactio , (3.36)

we conclude that the element shape functions of a bar

ϕe
1(x) = 1 − x

le
ϕe
1(0) = 1 , ϕe

1(le) = 0 ,

ϕe
2(x) = x

le
ϕe
2(0) = 0 , ϕe

2(le) = 1
(3.37)
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Fig. 3.7 Unit displacements of bar and a beam element

and of a beam, see Fig. 3.7,

ϕe
1(x) = 1 − 3x2

l2e
+ 2x3

l3e

ϕe
2(x) = −x + 2x2

le
− x3

l2e

ϕe
3(x) = 3x2

l2e
− 2x3

l3e

ϕe
4(x) = x2

le
− x3

l2e
(3.38)

are also the influence functions for the (negative) support reactions as in actio

f ei =
∫ le

0
p(x)

→
ϕe
i (x) dx i = 1, 2 bar (3.39)

f ei =
∫ le

0
p(x)

↓
ϕe
i (x) dx i = 1, 2, 3, 4 beam (3.40)

and reactio, f ei × (−1).
To be precise, this requires the unit displacements ϕe

i to be homogeneous solutions
of the governing equations, which means E A and E I must be constant.

In a single frame element, the unit displacements of the nodes are the influence
functions for the fixed end forces ×(−1).
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3.7 Shape Forces and the FE-load

To push a node of a plate by 1m in horizontal or vertical direction—while all other
nodes are kept fixed—requires a specific set of forces, see Fig. 3.8. We call these
forces in analogy to the notion of shape functions, the shape forces pi = {p(i)

x , p(i)
y }T ,

which belong to the displacement ui = 1. These are active and restraining forces.
The active forces push the node into the direction of the ui and the restraining forces
make that the motion stops at the neighboring nodes. The forces are always balanced,
they are equilibrium forces, see Fig. 3.9.

The sum of these shape-forces—weighted with the nodal displacements ui—is
the FE-load

ph =
∑

i

ui pi =
∑

i

ui

[
p(i)
x

p(i)
y

]

, (3.41)

which produces the shape u.
While in 2-D and 3-D problems some effort is necessary to detail the FE-load ph ,

see Fig. 3.10, in frame analysis (if E A and E I are constant) the FE-load is identical
with the nodal forces fi , which means in 1-D the fi [Nm] are real forces/moments if
you divide by 1m (not the moments), while in 2-D and 3-D they are “mere” calcoli,
forces “as if”.

Remark 3.3 Fig. 3.10 illustrates the flexibility (for not to say “ambiguity”) of struc-
tural analysis with regard to finite elements. What holds the plate fixed at the node, is

Fig. 3.8 Section of an
FE-mesh: The forces, which
displace the node by one unit
length to the right and
simultaneously stop the
motion at the neighboring
nodes are the shape forces.
The distributed surface
forces, px and py , are only
given as integral values. The
other part of the mesh (not
shown) is load free, is
smooth as a pond
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Fig. 3.9 Linear FE-solution of a stretched bar (E A = 1) carrying a constant load. Each shape
function is plotted together with its set of shape forces

not a point force, but the combined action of domain loads and line loads, while in the
printout you will only find an equivalent nodal force fi . This force is the “equivalent
sum” so to speak of these distributed forces, and the engineer has no problem (rightly
so) to forward this force to the next floor as a real force.

The Role of the ui

By a proper choice of the nodal displacements ui the FE-load ph , see (3.41), is made
to match the real load in the sense of the principle of virtual displacements, which
means the equivalent nodal forces f hi agree with the fi of the applied load

f hi =
∫

Ω

pTh • ϕi dΩ =
∫

Ω

pT • ϕi dΩ = fi . (3.42)
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Fig. 3.10 Point load, a system, b the FE-load ph ; the grey shades correspond to the strength of the
element loads in the bilinear elements, as in Fig. 3.8
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This is guaranteed, if u solves the system Ku = f , since each row (an internal
energy δWi ) is—owing to internal = external—identical to each row of the vector
f h (external work δWe)

K u = f ≡ f h = f . (3.43)

Imagine two plates side-by-side. The first carries the original load p and the second
the FE-load ph . When you move from node to node and you displace the node by
1m in horizontal and vertical direction, you will find that the work is each time the
same f hi = fi .

The FE-load is “shake-equivalent” to the original load.

Whether a structure carries the original load, or the substitute FE-load cannot be
determined by testing the structure with the shape functions. Any such test is not
conclusive, since each time the work comes out the same.

In Fig. 3.10 the original load and the FE-load are placed side by side. The single
force at the upper right corner gets replaced by a very confusing looking system of
domain loads and line loads, which constitute the FE-load ph . Because this load looks
so “strange”, it is normally not shown by FE-programs, since a user not familiar with
the theory would be irritated. (But it is the service load, for which the user designs
the structure).

That the FE-results cannot be as poor as Fig. 3.10 seems to indicate, illustrates a
direct comparison of the principal stresses in Fig. 3.11. These look okay.

We would like to add a second, indirect argument. In the original load case, all
fi = 0 are zero, except fi = 10 at the upper right corner, and therefore all fhi = 0
must be zero as well, except fhi = 10,

∫

Ω

pTh ϕi dΩ = fhi = fi = 0 . (3.44)

The FE-program must juggle vigorously to guarantee this property, and this may
explain the “chaos” in Fig. 3.10b. All the forces in this rather confusing looking load
case ph are so balanced that they do zero work when a node gets displaced by one
meter in horizontal or vertical direction.

Most of the FE-load ph is zero in terms of the energy metrics since it generates
(as it must(!)) no nodal forces fhi .

Remark 3.4 The shape forces pi of a plate are domain forces and line forces and
so the virtual work of these forces is a sum of domain integrals and line integrals.
The domain integral in (3.44) is an abbreviating notation for all these integrals.
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Fig. 3.11 Principal stresses, a coarse mesh, and b a very refined mesh
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3.8 How the Ball Got Rolling

If we read f h = f as the basic equation of the finite element method, then this agrees
with the approach in the original paper of Turner et alteri (1956) [1]. The authors
looked at a CST element and formulated a matrix S, which links the three (constant)
stresses in an element, σ = {σxx , σyy, σxy}T , to the nodal displacements3

σ (3) = S(3×6)u(6) . (3.45)

The FE-load ph , which generates the shape u consists of edge forces only, since the
derivatives of the constant stresses are zero—no volume forces. Next, the authors
calculated the six equivalent nodal forces, vector f h , which belong to the load ph by
superposing the element edge forces (tractions) with the 3 × 2 unit displacements
ϕi (x) of the three nodes. This led to a matrix T

f h = T (6×3)σ (3) , (3.46)

or with (3.45) to the equation

f h = T (6×3)S(3×6)u(6) , (3.47)

and this is exactly the stiffness matrix K = T S of the CST element. That an analysis
of virtual external work produced the stiffness matrix, whose entries we read as
virtual internal energies, is based on the inside = outside, which is guaranteed by
Green’s first identity. If

δWe( pi ,ϕ j ) =
∫

Γe

t(ϕi ) • ϕ j ds =: fi j (3.48)

is the work done by the tractions t(ϕi ), the edge stresses of the field ϕi , on acting
through ϕ j , then

G (ϕi ,ϕ j ) = δWe( pi ,ϕ j ) − δWi (ϕi ,ϕ j ) = fi j − ki j = 0 , (3.49)

and therewith

fhi = δWe( ph,ϕi ) =
∑

j

fi j u j =
∑

j

ki j u j . (3.50)

The elements ki j of a stiffness matrix K can be read as virtual internal energy as
well as virtual external work fi j .

3We follow here the representation in [2] pp. 882–883.
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Fig. 3.12 System consisting of two bar elements

The entry k11 = δWi (ϕ1, ϕ1) of a beam matrix

k11 =
∫ l

0

M2
1

E I
dx = a(ϕ1, ϕ1) = 12 E I

l3
· 1 = δWe(ϕ1, ϕ1) = f11 (3.51)

equals the work f11, which the force 12 E I/ l3—the force, which pushes the node
down by one unit length—does on acting through ϕ1(0) = 1.

The “first” stiffness matrix in the history of the FEM was a table of virtual
external work. Only the equation δWi = δWe leads to the interpretation how we
read stiffness matrices K today, ki j = a(ϕi ,ϕ j ).

What is truly remarkable is, how simple the finite elements began—no energy
principle, no Galerkin, no higher mathematics—but an old trusted principle, the
“shake equivalence”

δWe( p,ϕi ) = δWe( ph,ϕi ) the start of the FEM (3.52)

got the ball rolling.4

3.9 Assembling the Element Matrices

To prepare for the next section on the equivalent stress transformation, we shortly
repeat, how element matrices are assembled.

At the start the two element matrices of the bar in Fig. 3.12 are placed on the
diagonal of a 4 × 4 matrix K loc

4 Only later, when the mathematicians came on board, it was recognized that the elements could be
interpreted as finite functions and that the equivalence f h = f corresponds to the δΠ = 0 of the
potential energy.




