
Chapter 4
Betti Extended

In the previous chapter we repeatedly made use of the fact that the FE-solution
uh(x) is the superposition of the approximate influence function Gh(y, x) and the
load p(y)

uh(x) =
∫ l

0
Gh(y, x) p(y) dy . (4.1)

This result is based on a theorem which we call Betti extended .

Theorem 4.1 (Betti extended) One may replace the exact solutions u1 and u2 in
Betti’s theorem

W1,2 =
∫ l

0
p1 u2↑

dx =
∫ l

0
p2 u1↑

dx = W2,1 (4.2)

with the FE-approximations u1h and u2h

W h
1,2 =

∫ l

0
p1 u2h

↑
dx =

∫ l

0
p2 u1h

↑
dx = W h

2,1 . (4.3)

The claim is not that W h
1,2 is the same as W1,2, but rather: If W1,2 = W2,1 is true,

then W h
1,2 = W h

2,1 is true as well; in short,

(p1, u2) = (p2, u1) ⇒ (p1, u2h) = (p2, u1h) . (4.4)

The best way to understand Betti extended is to focus on Maxwell’s theorem, see
Fig. 4.1, which is just a particular application of Betti’s theorem

P1 · w2(x1) = P2 · w1(x2) . (4.5)
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Fig. 4.1 Maxwell’s theorem

If the two curvesw1(x) andw2(x) are approximated with finite elements, the deflec-
tions at the two points x1 and x2 are not exact

w1h(x2) �= w1(x2) w2h(x1) �= w2(x1) , (4.6)

but Betti extended guarantees that Maxwell’s theorem holds true also in this situation

P1 · w2h(x1) = P2 · w1h(x2) . (4.7)

This feature extends Maxwell’s theorem to FE-solutions, set P1 = P2 = 1, which is
not necessarily self-evident. That it had to be true for the nodal values, is a conse-
quence of the symmetry of the stiffness matrices. Betti extended guarantees this also
for all points in between.

4.1 Proof

The proof of Betti extended is based on the two equations

∫
Ω

p1h u2h dΩ =
∫

Ω

p1 u2h dΩ (4.8a)
∫

Ω

p2h u1h dΩ =
∫

Ω

p2 u1h dΩ , (4.8b)

and Betti’s theorem itself

B (u1h, u2h) =
∫

Ω

p1h u2h dΩ −
∫

Ω

p2h u1h dΩ = 0 . (4.9)
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This gives

∫
Ω

p1 u2h dΩ =
∫

Ω

p1h u2h dΩ =
∫

Ω

p2h u1h dΩ =
∫

Ω

p2 u1h dΩ , (4.10)

or
∫

Ω

p1 u2h dΩ =
∫

Ω

p2 u1h dΩ , (4.11)

which is Betti extended.
At Eq. (4.8a) we arrive as follows: According to the Galerkin-orthogonality we

have

δWi = a(u1 − u1h, ϕi ) = 0 , (4.12)

or, if we write it as external instead of internal virtual work, δWi = δWe,

∫
Ω

(p1 − p1h) ϕi dΩ = 0 i = 1, 2, . . . n ⇒
∫

Ω

(p1 − p1h) u2h dΩ = 0 ,

(4.13)

since u2h is a linear combination of the ϕi . In the same way we arrive at the second
equation.

With Betti extended the proof of the central Eq. (4.1) is easy, since in the influence
function for u(x)

W1,2 = 1 · u(x) =
∫ l

0
δ(y − x) u(y) dy =

∫ l

0
G(y, x) p(y) dy = W2,1 , (4.14)

we may replace u and G with the FE-solutions uh and Gh

W h
1,2 =

∫ l

0
δ(y − x) uh

↑
(y) dy =

∫ l

0
Gh
↑

(y, x) p(y) dy = W h
2,1 , (4.15)

and so

uh(x) =
∫ l

0
Gh(y, x) p(y) dy . (4.16)

This switch, u → uh and G → Gh , can be applied to all linear functionals

J (u) =
∫ l

0
δ(y − y) u(y) dy =

∫ l

0
G(y, x) p(y) dy , (4.17)
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resulting in

J (uh) =
∫ l

0
δ(y − y) uh(y) dy =

∫ l

0
Gh(y, x) p(y) dy . (4.18)

4.2 At Which Points Is the FE-Solution Exact?

With the help of Betti extended we can now also specify when and where FE-results
are exact.

We study this question with a prestressed rope. The influence function G(y, x)

for the deflection u(x) of the rope, see Fig. 4.2, at the point x = 1.5 is the response
of the rope to a single force P = 1, a Dirac delta δ(y − x).

Since the FE-program cannot generate this shape, it instead places two half as
large single forces at the two neighboring nodes. This is—in our notation—the load
case δh(y, x) and the corresponding deflection Gh(y, x) is the approximate influence
function.

So, there are two Dirac deltas, the exact and the approximate

δ(y − x) ↓ δh(y − x)
1

2
↓ +1

2
↓ , (4.19)

and also, two influence functions

G(y, x) (one peak) Gh(y, x) (two peaks) . (4.20)

With finite elements we search for an approximate solution in the spaceVh , i.e. all the
rope polygons, which can be generated with the three nodal shape functions ϕi (x).
Note, the dual of Vh is the space V∗

h of all load cases (nodal forces f1, f2, f3), which
create the rope polygons in Vh .

Now, if a function uh lies in Vh (is a rope polygon), the approximate Dirac delta
(2 half-sized single forces) is as good as the exact Dirac delta (one single force)

uh(x) =
∫ l

0
δ(y − x) uh(y) dy =

∫ l

0
δh(y − x) uh(y) dy . (4.21)

In concrete terms this means

1 · uh(x) = 1

2
· uh(x1) + 1

2
· uh(x2) , (4.22)

and this makes sense since the height of a straight line in between two nodes is just
the average of the nodal values.
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Fig. 4.2 Influence function for the deflection at the point x = 1.5, a exact influence function, b
approximation, c FE-solution under uniform load p = 1

And because the FE-load case ph lies in V∗
h , i.e. consists of three nodal forces, the

approximate influence function Gh(y, x) is as good as the exact influence function

uh(x) =
∫ l

0
G(y, x) ph(y) dy =

∫ l

0
Gh(y, x) ph(y) dy . (4.23)

This too, is easy to understand. Since the load ph consists of nodal forces fi , the
influence function is a sum over the nodes
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uh(x) =
∫ l

0
Gh(y, x) ph(y) dy =

3∑
i=1

Gh(yi , x) fi . (4.24)

But each of the three nodal influence functions is exact, Gh(yi , x) = G(yi , x), and
this explains why the sum in (4.24) is uh(x) at each point x .

On Vh and V∗
h the results obtained with δh(y, x) and Gh(y, x) respectively are

exact.

And this is true for any function in Vh , since (4.21) applies to all uh ∈ Vh . And
since ph lies in V∗

h one can calculate any value uh(x) of the rope polygon with the
approximate influence function Gh(y, x). This is the essence of (4.24).

But that is not the end of it. The approximate Dirac delta, the two “half-sized”
point loads at the neighboring nodes, constitute themselves a functional

Jh(u) =
∫ l

0
δh(y − x) u(y) dy = 1

2
(u(x1) + u(x2)) , (4.25)

which can be applied to any function—not just the rope polygons in Vh . Applied to
u(x) = sin π x/4 the result is

Jh(u) = 1

2
(sin

1.0π

4
+ sin

2.0π

4
) = 0.85 , (4.26)

while J (u) = sin(1.5π/4) = 0.92. So, there is a difference between J and Jh .
However, regarding the exact solution u(x) and its FE-approximation uh(x), the

following h-permutation rule applies

Jh(u) = J (uh) (4.27)

which can easily be verified, since

Jh(u) = 1

2
(u(1.0) + u(2.0)) = 1

2
(1.5 + 2.0) = 1.75 (4.28)

J (uh) = uh(1.5) = 1.75 . (4.29)

The functional Jh(u) measures u at the two points x = 1.0 and x = 2.0, while the
functional J (uh) measures uh only at the source point x = 1.5. But both measure-
ments produce the same result!

The h-permutation rule is based on the fact that an FE-solution can be written in
six separate ways
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uh(x) =
∫ l

0
G(y, x) ph(y) dy =

∫ l

0
Gh(y, x) p(y) dy

=
∫ l

0
Gh(y, x) ph(y) dy

=
∫ l

0
δ(y, x) uh(y) dy =

∫ l

0
δh(y, x) uh(y) dy

=
∫ l

0
δh(y, x) u(y) dy , (4.30)

and if we also count the three formulas

uh(x) = a(G, uh) = a(Gh, uh) = a(Gh, u) , (4.31)

which are variants of Mohr’s integral, then there are even nine.
The first two equations

J (uh) =
∫ l

0
G(y, x) ph(y) dy =

∫ l

0
Gh(y, x) p(y) dy = Jh(u) (4.32)

formulate the h-permutation rule, which is of course applicable to any functional
J (uh), not only the displacements u(x).

Whether we superpose the exact influence function G with the FE-load ph , or the
approximate influence function Gh with the original load p, makes no difference—
the result is the same.

Figure 4.3 illustrates this with a pier placed under a plate, which carries a heavy-
duty truck. The exact influence for the pier reaction is plotted in Fig. 4.3a and the
approximate function in Fig. 4.3b. The wheel loads of the truck represent the load
p, and the block load is a graphical substitute for the FE-load ph . We have only one
formula for the exact pier reaction

R =
∫

Ω

G( y, x) p( y) dΩ y , (4.33)

but three ways to calculate the approximate pier reaction Rh

Rh =
∫

Ω

G( y, x) ph( y) dΩ y =
∫

Ω

Gh( y, x) ph( y) dΩ y =
∫

Ω

Gh( y, x) p( y) dΩ y .

(4.34)
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Fig. 4.3 Hinged plate with central pier. The four wheels of the truck, LC p, placed on the influence
surface Gh gives the pier reaction Rh of the FE-solution. The same result is obtained, if the FE-
load ph (here pictured as a block load) is placed on the exact influence surface. And it is as well
Rh = (Gh, p) = (Gh, ph), see Figure b and d
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4.3 Exact Values

We can now also state, when the FE-solution is exact at a point.

Theorem 4.2 (Exact values)

Sufficient conditions

1. If the influence function G of a functional J lies in Vh, its FE-approximation Gh

is identical with G and therefore

J (uh) = Jh(u) = J (u) , (4.35)

or

J (uh) = (G, ph) = (Gh, p) = (G, p) = J (u) . (4.36)

2. If the exact solution lies in Vh, u = uh, the error in any influence function is
orthogonal to the right side p of the solution

J (u) − J (uh) =
∫

Ω

(G( y, x)) − Gh( y, x)) p( y) dΩ y = 0 . (4.37)

Necessary condition

1. If a value is exact, J (uh) = J (u), the error in the influence function must be
orthogonal to the right side p

J (u) − J (uh) =
∫

Ω

(G( y, x)) − Gh( y, x)) p( y) dΩ y = 0 . (4.38)

4.4 One-Dimensional Problems

Since all influence functions are piecewise homogeneous solutions of the governing
differential equation, exact nodal values, uh(xi ) = u(xi ), require the trial space Vh

to contain these solutions.
In 1-D problems such as −E A u′′ = px and E I w I V = pz this is true, since the

homogeneous solutions

uh(x) = c1 + c2 x (4.39a)

wh(x) = c1 + c2 x + c3 x2 + c4 x3 (4.39b)

lie in Vh , see Fig. 4.2, but if a bar must work against some friction (c)




