
Chapter 5
Stiffness Changes and Reanalysis

The subject of this chapter are changes in the stiffness of single structural members
andwe study how such shifts propagate through a structure, how they affect the stress
distribution in a structure.

In terms of linear algebra such modifications correspond to an update of the
stiffness matrix, K → K + ΔK, and the solution u → uc = u + Δu

(K + ΔK) (u + Δu) = f or Kc uc = f . (5.1)

The approach in this chapter is that we compute the response uc of the modified
structure via the responseu of the original, unmodified structureK u = f , a technique
which is called reanalysis.

The essential insight is: The new displacement vector uc is the response of the
original system when a vector f+ = −ΔK uc is added to the right side

Kuc = f + f+ , (5.2)

and f+ is orthogonal to all rigid-body motions u0 = a + x × b, which is the reason
why the effects of local stiffness changes most often subside rapidly.

A stiffness change triggers a compensating displacement Δu = uc − u, and Δu =
K−1f+ is the reaction of the structure to additional self-equilibrated nodal forces
f+ = −ΔKuc, that is f+ • (a + b × x) = 0

The problem with this approach is of course that the new vector uc, on which
f+ = ΔK uc depends, is unknown, though eventually the vector ΔKu � f+ can
serve as substitute. We will also present two techniques to calculate uc directly, see
Sect. 5.22, but our main concern is not to beat the computer, but we want insight into
the effects of stiffness changes.
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The algebra behind reanalysis is easily explained: To solve the equation

−(H + ΔH )u′′
c = p (5.3)

we place the term −ΔH u′′
c on the right side,

−H u′′
c = p + ΔH u′′

c (5.4)

and so the equivalent nodal forces are

∫ l

0
ϕi p dx +

∫ l

0
ϕi ΔH u′′

c dx = fi + f +
i . (5.5)

Back to K uc = f + f+. The new solution uc is, like the old solution u = ∑
i fi gi,

an expansion in terms of the influence functions of the nodal displacements (= the
columns gi of the old inverse K−1)

uc =
∑
i

fi gi + f +
a ga + f +

b gb + · · · = u + f +
a ga + f +

b gb + · · · , (5.6)

only that some columns appear twice, and then carry additional weights f +
a , f +

b , . . .

corresponding to the modified values kab. If for example four entries k3,3, k3,7, k7,3,
k7,7 change, two (initially unknown) weights f

+
3 and f +

7 mark the difference between
the new and the old displacement vector

uc − u = f +
3 g3 + f +

7 g7 . (5.7)

Nothing new is added, the old is only supplemented—with old.
This is the same approach as in the force method, since we do not change the

stiffness matrix, but we change the right side, f becomes f + f+.
The force method chooses a statically determinate structure as its primary struc-

ture, and in the sequence all calculations are done on this system. It corresponds to
the undisturbed systemK since the redundants Xi play the same role as the f +

i . While
the f +

i couple the added element to the structure, the Xi make that the gaps at the
joints close. Both, the Xi and f

+
i , are additional loadswhich appear on the right side,

while the proper analysis is done with the primary structure (matrix K).
This approach has a further advantage: We do not need two sets of influence

functions, one for the primary structure (matrixK) and a separate set for the statically
indeterminate structure (matrix Kc), since the changes in any functional

J (e) = J (uc) − J (u) = gT f+ , (5.8)

can be calculated with the influence functions g of the original system K.
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5.1 Parameter Identification

If you pull on a spring with a force f and measure the extension u, you can determine
the stiffness k = f /u of the spring. Parameter identificationmeansfitting the elements
kij of a stiffness matrix to measured data. Mathematically this counts as a (difficult)
inverse problem. Since the columns gi of K

−1 are the influence functions of the
nodal displacements, everything depends on the influence functions. How do the
system responses change with corrections kij → kij + Δkij? How to modify the kij
to reproduce the measured data? How sensitive is the structure to such changes?

These are precisely the questions that also play an important role in reanalysis,
because in Sect. 5.14 we will see that the derivative of the displacement vector with
respect to an element kij

∂u
∂kij

= −K−1uj ei = −uj gi , (5.9)

depends on the influence function gi and the nodal displacement uj. In this sense
the title of the chapter could also have been Reanalysis and Parameter Identifica-
tion. We could extend this list also further by adding Structural Health Monitoring
which makes ample use of parameter identification techniques, but then mainly in
the dynamic range [1].

5.2 Introductory Remarks

We start with a spring, k u = f , see Fig. 5.1. The reaction of the spring to a force
f = 1 (the Dirac delta) is G = 1/k, and a shift in the stiffness, k + Δ k, changes the
response toGc = 1/(k + Δ k), and so the reaction to any force f before, u, and after,
uc, is

u = 1

k
f uc = 1

k + Δ k
f . (5.10)

A Taylor series of the updated influence function

1

k + Δ k
= 1

k
− 1

k2
Δ k + · · · (5.11)

illustrates, how the spring reacts to the shift in the stiffness

uc �
[
1

k
− 1

k

Δ k

k

]
f = u − 1

k
Δ k · u︸ ︷︷ ︸
force

. (5.12)
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Fig. 5.1 A change in the stiffness means a change in the slope of k u = f

The increase, k → k + Δ k, lets the original u shoot beyond the target, the force in
the spring, (k + Δ k) u = f + Δ k · u, becomes too large, and to eliminate this too
much an opposite displacement Δ u � −Δ k · u/k must correct this.

Since the Taylor series of a stiffness matrix reads [2],

(K + ΔK)−1 = K−1 − K−1ΔK K−1 + · · · (5.13)

the analogy between (5.12) and

uc = (K + ΔK)−1f � u − K−1ΔK u (5.14)

is evident. If we multiply this equation from the left with K

Kuc = Ku − ΔKu , (5.15)

it has (almost) the form in which we treat it in this chapter. Almost, since we do
not use a Taylor series, but the exact formula, i.e. we replace −ΔKu with the exact
−ΔKuc =: f+

Kuc = Ku − ΔKuc = f + f+ . (5.16)

The approximation (5.14) means uc − u � −K−1ΔKu. We can even understand this
equation, if we apply it to a beam, EI → EI + ΔEI , and write it in integral form

wc(x) − w(x) = −
∫ l

0
G0(y, x)
︸ ︷︷ ︸

K−1

ΔEI
d4

dy4︸ ︷︷ ︸
ΔK

∫ l

0
G0(y, z) p(z) dz

︸ ︷︷ ︸
u

dy (5.17)
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Fig. 5.2 In the second
element the stiffness EA is
doubled

or

wc(x) − w(x) = −
∫ l

0
G0(y, x)

ΔEI

EI
p(y) dy . (5.18)

So, a decrease, ΔEI < 0, is equivalent to an increase in the load p.1

Example 5.1 An elementary example may illustrate the technique. The bar in
Fig. 5.2 consists of two elements with the same stiffness EA = 1 kN, and a force
f2 = 10 kN pulls at its right end

1It is EI d4/dy4G0 = δ0 and if you replace EI by ΔEI , this is ΔEI/EI δ0 and so the integral
gives (ΔEI/EI Δ0, p) = ΔEI/EI · p(y). Furthermore, ΔKu = δWi = δWe and δWe contains the
operator ΔEI d4/dy4.
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[
2 −1

−1 1

] [
u1
u2

]
=

[
0
10

]
, (5.19)

and so, u1 = 10m, u2 = 20 m.
On doubling the stiffness of the second element, EA → 2EA,

[
3 −2

−2 2

] [
uc1
uc2

]
=

[
0
10

]
, (5.20)

the nodal displacements become uc1 = 10m, uc2 = 15 m.
The question is then which vector f+ wemust add to the right side f of the original

system (5.19) to produce the same effect, the same displacements

[
2 −1

−1 1

] [
uc1
uc2

]
=

[
0
10

]
+ X

[
1

−1

]
. (5.21)

We assume the vector f+ to be an equilibrium vector (the sum of its components is
zero), and the result justifies this assumption since with X = 5 we obtain a solution,
a vector

f + f+ =
[
0
10

]
+

[
5

−5

]
=

[
5
5

]
, (5.22)

to which the original system reacts in the same way as the modified system, the nodal
displacements ui = uci are the same

[
2 −1

−1 1

] [
10
15

]
=

[
5
5

]
. (5.23)

5.3 Adding or Subtracting Stiffness

A change in the stiffness of an element can be interpreted as placing an additional
element in front of the original element, so that the two elements together have the
target stiffness, see Fig. 5.3.

Since the additional elementmust be synchronizedwith themotions of the original
structure coupling forces need to hold the nodes together, and these forces are just
the f+. This explains why the forces f+ are equilibrium forces, because if they were
not, the added element would fly off.

If the stiffness of the element increases, the coupling forces f+ normally have
the tendency to hinder the deformation of the element, they stiffen, so to speak, the
element.
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Fig. 5.3 A stiffness change
K + ΔK is equivalent to
attaching an element Ω+

e
having the stiffness matrix
ΔK to the structure [3]

Conversely, if the stiffness in the element decreases, the coupling forces f+ will
add to the deformations of the element, they act like additional weights at the nodes
of the element.

5.4 Dipoles and Monopoles

Two opposite forces f +
i = ±1/h, a distance h apart, become a dipole when h tends

to zero.
If, however, the two forces remain finite even in the limit h = 0, we call this a

pseudodipole. The proton (+) and the electron (−) in a hydrogen atom form such a
pseudodipole, since the distance between the two opposite elementary charges is so
small that their effects on a point charge outside the atom practically cancel out.

The same can be said about the forces f +
i , since to each force f +

i corresponds
an opposite force f +

j , so that the two forces f +, seen from a distance, resemble a
pseudodipole, see Fig. 5.4.

The effect of the forces f +
i on any point x of the structure depends on how large

the runtime difference from the point x to the force +f +
i and the counterforce −f +

i
is. If two forces±f +

i are only a small distance apart, because the elementΩe is small,
their effects cancel each other out, since the influence function hardly changes on
the element, G ′ � 0.

Imagine a bar, which is modeled with seven linear elements, and in the second
element the stiffness changes, EAc = EA + ΔEA, while we are about to calculate the
influence function for the normal force in the last element by spreading the element
at its midpoint by one unit.
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Fig. 5.4 A stiffness change in an element activates coupling forces f+
i . These forces follow the

directions of the principal stresses (- - -) and they are equilibrium forces, comparable to pseu-
dodipoles

The effect of the spread propagates to the left, to element # 2, where two forces
±f + (at the two nodes of the element) simulate the effect of the stiffness change,
EAc = EA + ΔEA. One force f +

i pulls to the left and an opposite force f +
i+1 pulls to

the right. The influence function for the normal force

G(y, x) =
∑
j

gj(x)ϕj(y) (5.24)

will have the value gi at the left node and gi+1 at the right node of element # 2, and
so the effect of the stiffness change on the normal force N = J (u), new–old, in the
last element

Nc − N = J (uc) − J (u) = f +
i gi − f +

i+1gi+1 = f +
i · (gi − gi+1) � f +

i · G ′ · le ,

(5.25)

will only be noticeable if the influence function has a distinct slope, G ′ � 0, in the
element #2. We may express this observation by saying:

The force pair ±f +
i “differentiates” the influence function.

Remark 5.1 This picture of two forces f +
i and f +

i+1 exactly opposite each other and
of the same size, is only true in the 1-D model of a bar. In a beam element the f +

i
would be two forces (which still add to zero) and two moments and all four balance




