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Fig. 6.18 The stresses σxx remain bounded in these load cases

Remark 6.2 Numerical tests prove that force couples do not produce singular
stresses, see Fig. 6.18.

6.8 Standard Situations

But a cantilever plate is not so special. Even at such seemingly harmless points as
the reentrant corners of openings in a wall plate, see Fig. 6.19, singularities develop.
Normally the meshes are too coarse for the singularities to shine through, but when
one really goes all the way in, as in Fig. 6.20, one notices the infinite stresses. In
highly stressed mechanical parts as turbine blades such stress singularities can be
relevant for the design (stress intensity factors).

6.9 Singularities in Influence Functions

Also influence functions must cope with the singularities on the boundary, because
these singularities pollute the FE-solution via an unavoidable “boundary element”
mechanism: Also FE-solutions are potentials, since they are the superposition of
the load with influence functions, see Sect. 9.18.

To understand this, we consider a membrane, which covers an L-shaped opening,
see Fig. 6.21. When the wind p presses down on the membrane, the slope of the
membrane at the re-entrant corner will be very steep, we may even assume infinite
in value, w,x = ∞ and w,y = ∞, and this means, the shear forces vx and vy

vx = H w,x vy = H w,y H = prestress , (6.19)

will be infinite at the re-entrant corner.
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Fig. 6.19 Wall plate with adaptively refined mesh, and constructive reinforcement at the corners

But even in this dramatic situation the influence function for the FE-solution

wh(x) =
∫

Ω

Gh( y, x) p( y) dΩ y , (6.20)

looks the same and nothing seems to indicate that the kernel Gh( y, x) suffers from
a singularity at the re-entrant corner. Where do the negative effects of the singularity
hide?

We only want to sketch the answer. Readers who are familiar with potential theory
or the boundary element method know that the solution of the equation −Δw = p
can be written as a boundary integral plus a domain integral, see Sect. 9.17,

w(x) =
∫

Γ

(g( y, x)
∂w

∂n
( y) − ∂g( y, x)

∂n
w( y)) ds y +

∫
Ω

g( y, x) p( y) dΩ y .

(6.21)

That is, we can calculate the shape of the surfacew via the auxiliary function g( y, x)

from its boundary values w, and ∂w/∂n on the edge Γ , and from the way the load
p is distributed in the domain Ω .

The function

g( y, x) = − 1

2π
ln | y − x| , (6.22)

is called a fundamental solution, since it satisfies the equation −Δg( y, x) =
δ( y − x).
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Fig. 6.20 Gravity load in a wall plate on two point supports, a principal stresses, b stresses σyy in
horizontal sections (BE-solution)

Fig. 6.21 L-shaped membrane under uniform pressure
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This integral representation can also be applied to the influence function G( y, x).
In this situation, the load to which G( y, x) corresponds, is a Dirac delta δ( y − x),
and since G( y, x) is zero on the edge Γ , the equation reduces to

G( y, x) =
∫

Γ

[g(ξ , y)
∂Gh

∂n
(ξ , x) − ∂g(ξ , y)

∂n
G(ξ , x)] dsξ

+
∫

Ω

g(ξ , y) δ(ξ − x) dΩξ︸ ︷︷ ︸
= g( y,x)

=
∫

Γ

g(ξ , y)
∂G

∂n
(ξ , x) dsξ + g( y, x) . (6.23)

Next, we repeat this with the FE-approximation Gh( y, x), which is the solution
to the boundary value problem

−ΔGh( y, x) = δh( y, x) Gh = 0 at the edge Γ , (6.24)

where δh( y, x) is a patchwork of distributed forces (and line forces), which try to
simulate the action of a true point load, of a Dirac delta δ( y − x). Therefore Gh( y, x)

has the integral representation

Gh( y, x) =
∫

Γ

g(ξ , y)
∂Gh

∂n
↑

(ξ , x) dsξ +
∫

Ω

g(ξ , y) δh(ξ , x) dΩξ , (6.25)

and here we see the critical point. At the re-entrant corner the slope ∂Gh/∂n of the
membrane will probably be infinite (we are talking now about the load case δh( y, x))
and such singular shapes cannot be modeled accurately with finite elements, which
means the normal derivative ∂Gh/∂n of the FE-solution will be inaccurate at the
corner, and because this inaccuracy affects, see (6.25), also Gh( y, x), the influence
function Gh( y, x) will be less accurate—not only at the corner—but in the whole
domain, at any point.

Singularities on the edge propagate through this mechanism into the interior and
reduce the quality of the influence function and therefore of the FE-solution wh

itself.

∂G

∂n
→ ∂Gh

∂n
→ Gh → wh =

∫
Ω

Gh p dΩ y

Nothing can break this chain.

This is like a canvas throwing wrinkles when the suspension on the edge is faulty.
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To be precise we would have to add to the domain integral in (6.25) also the
contributions of the line loads lh (= jumps in the slope of Gh( y, x))

∫
Ω

g(ξ , y) δh(ξ , x) dΩξ +
∑

i

∫
Γi

g(ξ , y) lh(ξ , x) dsξ , (6.26)

but we read the domain integral in (6.25) as a shorthand for both contributions. Here
the focus is on the slope on the boundary and its effect. The slope is the critical part.

Wall Plates

What in a membrane is the slope, are the tractions t = S n on the edge of a plate, and
the equation analogous to (6.21) is the integral representation (in tensor notation,
summation over repeated indices is implied)

ui (x) =
∫

Γ

(G F
i j ( y, x) t j ( y)

↑
− T F

i j ( y, x) u j ( y)) ds y +
∫

Ω

G F
i j ( y, x) p j ( y) dΩ y

of a displacement field u(x) = {u1, u2}T .
The functions G F

i j ( y, x) are the displacements ( j = 1, 2) (x- and y-direction) of
the elastic plane of infinite extent, if a single force P = 1 pushes the node x into the
directions i = 1, 2 and the functions T F

i j ( y, x) are the tractions ( j = 1, 2) (x- and
y-direction) of these fields on the curve Γ .

The 2 × 2 matrix GF is called the Somigliana matrix, and it plays the same role
as the function g( y, x) in (3.41), since it is the fundamental solution of the governing
2 × 2 system of equations (7.27).

When we apply this integral representation to Green’s function this leads to

Gi j ( y, x) =
∫

Γ

(G F
jk(ξ , y) Tik(ξ , x) − T F

jk(ξ , y) Gik(ξ , x)) dsξ

+
∫

Ω

G F
jk(ξ , y) δik(ξ − x) dΩξ , (6.27)

and in the case of the FE-solution to

Gh
i j ( y, x) =

∫
Γ

(G F
jk(ξ , y) T h

ik
↑

(ξ , x) − T F
jk(ξ , y) Gh

ik(ξ , x)) dsξ

+
∫

Ω

G F
jk(ξ , y) δh

ik(ξ , x) dΩξ . (6.28)
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This suffices to recognize that the sensitive part in the approximation of the FE-
influence function Gh

i j ( y, x) are the tractions T h
ik due to the approximate point load,

the Dirac delta δh
ik . At singular points on the boundary the accuracy of these tractions

will be questionable.

Kirchhoff Plates

What in a membrane is the slope are the moments and the Kirchhoff shear (support
reactions) along the edge of the plate. Their singularities have a decisive influence
on the accuracy of the FE-influence functions, see Fig. 6.22. In very simplified terms
does the influence function of a plate look like,

w(x) =
∫

Γ

(g w′′′ + g′w′′ + g′′w′ + g′′′w) ds y +
∫

Ω

g p dΩ y , (6.29)

where

g( y, x) = 1

2π K
r2 ln r K = E h3

12 (1 − ν2)
(6.30)

is the fundamental solution, and K is the plate stiffness.
In this notation w′ is the slope on the boundary, w′′ is the moment and w′′′ is the

Kirchhoff shear. The exact influence function G has the boundary values G = 0 and
G ′′ = 0 (hinged edge), and so the formula reduces to

G( y, x) =
∫

Γ

(g G ′′′ + g′′ G ′) ds y + g( y, x) . (6.31)

The FE-influence function satisfies the zero-moment condition G ′′ = 0 on the hinged
edge only approximately, and so we are not allowed to drop its contribution

Gh( y, x) =
∫

Γ

(g G ′′′
h + g′G ′′

h + g′′G ′
h) ds y +

∫
Ω

g δh dΩ y . (6.32)

Consequently, the quality of the FE-influence function depends on the slope G ′
h and

the moment

G ′′
h ≡ mxx n2

x + 2mxy nx ny + myy n2
y (2nd deriv.) (6.33)

and the shear force

G ′′′
h ≡ mi j , j ni + d

ds
mnt (3rd deriv.) . (6.34)
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Fig. 6.22 Hinged plate and the bending moments produced by the Dirac delta P = 1, which
generates the influence function G0( y, x) for the deflectionw(x). At reentrant corners the moments
become singular and this has a negative effect on the quality of the FE-influence function



6.9 Singularities in Influence Functions 385

If these functions are critical at a corner point, it will obviously diminish the quality
of the influence function.

All this applies to the influence functions of the internal forces as well

mxx (x) =
∫

Γ

(G2 w′′′ + · · · vx (x) =
∫

Γ

(G3 w′′′ + · · · (6.35)

and these react even more sensitively to singularities since they calculate second- or
third-order derivatives. This is better seen, if we write (6.29) for all four quantities
w,w′, w′′, w′′′ and keep only the characteristic singularities of the kernels

⎡
⎢⎢⎣

w

w′
w′′
w′′′

⎤
⎥⎥⎦ =

∫
Γ

⎡
⎢⎢⎢⎢⎣

r−1 ln r r ln r r2 ln r

r−2 r−1 ln r r ln r

r−3 r−2 r−1 ln r

r−4 r−3 r−2 r−1

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎣

w

w′
w′′
w′′′

⎤
⎥⎥⎦ ds y +

∫
Ω

⎡
⎢⎢⎣

G0

G1

G2

G3

⎤
⎥⎥⎦ p dΩ y .

(6.36)

Column #1 is the Kirchhoff shear of the Gi , column #2 are the moments, next come
the normal derivatives and finally, in column #4, the Gi itself.

So much for the theory. In practice, however, the effects of singularities are
unlikely to be so dramatic, since engineering accuracy is not that demanding, and
the experienced engineer has a well-developed sense of what is credible and what is
not.

Finite elements in structural analysis are both, modeling and “slide rule”, and the
engineer is therefore very flexible—not to say: indulgent—in the interpretation of
FE-results.

In the case of the wall plate in Fig. 6.20 the tensile stress at the bottom increased
from σxx = 168 kN/m2 to σxx = 220 kN/m2 after an adaptive refinement, see Fig.
6.23, which is an unusually large increase. Not in all cases will the difference be so
large; unfortunately, no fixed rules can be established.

We think stress peaks are “harmless”, if the plastic zone, which may form, does
not cause massive compensating motions. In the case of the wall plate in Fig. 6.23 it
is probably different, since it is only held fixed by two “tiny” point supports.

Perhaps a word about the separate roles of finite elements in mathematics and
in engineering is in order here. For a mathematician finite elements are functions,
shape functions, while for an engineer finite elements are structural elements, and
the engineer therefore is not only interested in the approximation error, but also in
themodeling error.

Both errors are interrelated. In contrast to the construction of a house, finite ele-
ments need to improve the foundations, when the roof truss is already in place, and
the model still is open to adjustments. The analysis of the modeling error is as impor-




