
Chapter 8
Nonlinear Problems

In this chapter we discuss nonlinear problems. The focus is on the questions, which
parts of the algebra of finite elements can be directly transferred to the nonlinear
theory and where the nonlinear theory differs from the linear theory and what are the
characteristic features of nonlinear theories.

To be as illustrative as possible, we have included selected examples to detail the
numerical analysis of nonlinear problems.

The transition from linear theory to nonlinear theory, unfortunately,means a loss of
transparency in the formulations, since nonlinear finite element formulations consist
to a large part in a seemingly endless application of the product and chain rules
of calculus, coordinate transformations, first-order approximations, and integration
by parts and all this spiced with linear algebra. (For help with the technical issues
see [1]).

We have tried to make the walk through the subject as transparent as possible.

8.1 Introduction

The key point in any nonlinear formulation are the three steps u → ε → σ → p. If
these are understood and formulated correctly Green’s first identity

G (u, δu) = au(u, δu) − (p, δu) = 0 , (8.1)

formulates itself automatically and the “rest” is just algebra and a fast computer.
As in the linear theory we let the FE-solution uh = ∑

j u j ϕ j (x) and we find the
nodal displacements ui by solving the n equations

au(uh,ϕi ) − (p,ϕi ) = 0 i = 1, 2, . . . , n , (8.2)
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or

k(u) = f (8.3)

for short, where ki = au(uh,ϕi ) and fi = (p,ϕi ).
The vector f is the virtual work of the load on acting through the ϕi , and the

left side is the increment of the virtual internal energy on acting through the ϕi .
One moves from the equilibrium position u in a direction ϕi and checks whether
the increase of the virtual internal energy corresponds to the increase of the virtual
external work. This increment au(uh,ϕi ) is the Gateaux derivative of the strain
energy.

8.2 Gateaux Derivative

Let J (u) be a (possibly nonlinear) functional, the expression

Ju(δu) = d

dε
J (u + εδu)|ε=0 (8.4)

is the Gateaux derivative of J (u) in the direction of the increment δu.
We form J (u + εδu) with a test function δu (virtual displacement), differentiate

with respect to ε, and set ε = 0 at the end.
This derivative (actually it is a differential, an increment) looks like a stopgap solu-

tion, if something cannot be differentiated correctly, one replaces it by a difference
quotient, and one takes the limit.

Surprisingly, however, this derivative appears automatically in many nonlinear
formulations, as for example in Green’s identity of nonlinear elasticity, see (8.48),

G (u, δu) =
∫

Ω

p • δu dΩ +
∫

ΓN

t̄ • δu ds −
∫

Ω

Eu(u, δu) • S dΩ = 0 , (8.5)

where

Eu(u, δu) := 1

2
(∇δu + ∇δuT + ∇uT ∇δu + ∇δuT ∇u) (8.6)

is the Gateaux derivative (= increment) of the nonlinear strain tensor E(u) at the
point u in the direction of δu,

d

dε
[E(u + εδu)]|ε=0 = Eu(u, δu) . (8.7)

So, what—at first glance—looks like a trick is an integral part of the variational
formulations of nonlinear problems.
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The symmetric strain energy product of linear elasticity

a(u, δu) =
∫

Ω

E(δu) • S(u) dΩ =
∫

Ω

E(u) • S(δu) dΩ = a(δu, u) , (8.8)

is replaced in the nonlinear theory by the integral

au(u, δu) =
∫

Ω

Eu(u, δu) • S(u) dΩ , (8.9)

which is the scalar product of theGateaux derivative of the strain tensorwith the stress
tensor. This integral is the increase in internal energy when u shifts to u + δu. In
nonlinear problemsGreen’sfirst identity is an “incremental view”of δWe − δWi = 0.

One could argue that also linear theory is an (exact) incremental view—exact
because all expressions are linear—while the nonlinearity makes it truly incremental,
a first-order approximation.

One consequence of the nonlinearity is that the simple algebra

B (u, û) = G (u, û) −G (û, u) = 0 , (8.10)

on which Betti’s theorem is based is not available. In nonlinear problems there is no
“Betti”, symmetry is lost.

8.3 Nonlinear Bar

The governing equations are

strains ε − (u′ + 1

2
(u′)2) = 0 (8.11a)

const. equation σ − E ε = 0 (8.11b)

equilibrium −A(σ + u′σ)′ = p . (8.11c)

Integration by parts of the virtual work integral, we write N = A (σ + u′σ),

∫ l

0
−N ′ δu dx = −[N δu]l0 +

∫ l

0
N δu′ dx = 0 , (8.12)

where

N δu′ = A(σ + u′σ) δu′ = (1 + u′) δu′ σA = εu(u, δu)σA , (8.13)

leads to Green’s first identity
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G (u, δu) =
∫ l

0
−N ′ δu dx + [N δu]l0 −

∫ l

0
εu(u, δu)σ A dx

︸ ︷︷ ︸
au(u,δu)

= 0 (8.14)

with εu(u, δu) := (1 + u′) δu′ as the Gateaux derivative

d

dη
ε(u + η δu)|η=0 = d

dη

(
u′ + η δu′ + 1

2
(u′ + η δu′)2

)|η=0 (8.15)

of ε(u) in the direction of δu.

8.3.1 Newton’s Method

Let u(x) be the longitudinal displacement of a bar fixed on the left, u(0) = 0, and
with a free end, N (l) = 0. Given the solution

uh =
∑

j

u j ϕ j (x) , (8.16)

we determine the nodal displacements u j by solving the n equations

au(uh,ϕi ) −
∫ l

0
p ϕi dx = ki (u) − fi = 0 i = 1, 2, . . . , n . (8.17)

This is a set k(u) = f of n nonlinear equations, which a computer solves iteratively
with Newton’s method

ui+1 = ui − (∇k(ui ))
−1(k(ui ) − f ) (8.18)

or

ui+1 = ui − K−1
T (ui ) (k(ui ) − f ) , (8.19)

where K T (ui ) is the tangential stiffness matrix.

8.4 Geometrically Nonlinear Beam

The bending stiffness E I and longitudinal stiffness E A are constant, and the dis-
tributed loads are px and pz . The displacements are the longitudinal displacement u
and the deflection w, and this pair can also be written as a vector v = {u, w}T ,
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ε = u′ + 1

2
(w′)2 κ = w′′ (8.20a)

N = E A ε M = −E I κ (8.20b)

−N ′ = px − M ′′ − (N w′)′ = pz . (8.20c)

The “displacement formulation” of this system is

−E A (u′ + 1

2
(w′)2)′ = px (8.21a)

E I w I V − (E A (u′ + 1

2
(w′)2) w′)′ = pz , (8.21b)

or in a slightly more transparent formulation

−N ′ = px (8.22a)

E I w I V − (N w′)′ = pz . (8.22b)

Let

N = N (v) = E A (u′ + 1

2
(w′)2) , M = M(w) = −E I w′′ , (8.23)

and let Lv the left side of (8.21), integration by parts of the work integral results in

∫ l

0
Lv • δv dx =

∫ l

0
((Eq1) · δu + (Eq2) · δw) dx

=
∫ l

0
[(−N ′ δu − (M ′′ + (N w′)′) δw] dx

= −[N δu + (M ′ + N w′) δw − M δw′]l0 + av(v, δv) , (8.24)

where

av(v, δv) =
∫ l

0
(−M δw′′ + N (δu′ + w′ δw′)) dx

=
∫ l

0
(
M(w) Mw(w, δw)

E I
+ N (v) Nv(v, δv)

E A
) dx (8.25)

with the Gateaux derivatives of M and N

Mw(w, δw) = [ d
dε

M(w + ε δw)]|ε=0 = δM (8.26)

Nv(v, δv) = [ d
dε

N (v + ε δv)]|ε=0 = E A(δu′ + w′δw′) . (8.27)
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So, Green’s first identity is the expression

G (v, δv) =
∫ l

0
Lu • δu dx + [N δu + (M ′ + N w′) δw − M δw′]l0

− av(v, δv) = 0 . (8.28)

If the normal force N is constant, we arrive at the well-known equation

E I w I V − N w′′ = pz (8.29)

of second-order theory.

8.4.1 Conservation of Energy

For a linear bar conservation of energy means

1

2
G (u, u) = 1

2

∫ l

0
p u dx − 1

2

∫ l

0

N 2

E A
dx = We − Wi = 0 . (8.30)

In the case of the cantilever beam in Fig. 8.1, with

ε = l

√
Px
E I

, Px = Pz = 1 , l = E I = 1 , (8.31)

the displacements according to second-order theory are

Fig. 8.1 Second-order
theory
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Fig. 8.2 Displacements at the end of the beam

u(x) = 1

ε(sin2(ε) − 1)
[−0.5 sin(ε(x − 2)) + 3 sin(2ε) − sin(2ε(x − 1))

+ 4 sin(εx) − 6 εx − 8 ε3x + 4 εx sin2(ε) + 8 ε3x sin2(ε)
]

(8.32a)

w(x) = Pz
ε3

[tan(ε) · (1 − cos(εx)) + sin(εx) − εx] . (8.32b)

The statement We = Wi is still true, but we cannot calculate the external work
We as in the linear theory, see Fig. 8.2, by simply superposing the load with the
displacements

We �= 1

2
(Px u(l) + Pz w(l)) = 1

2
(1.0 · 1.183 + 1.0 · 0.557) = 0.87 , (8.33)

but instead we must count the increments. Let dv = {du, dw} be the displacement
increment with respect to a load increment, then we read

dWi = av(v, dv) =
∫ l

0

(M(w) Mw(w, dw)

E I
+ N (v) Nv(v, dv)

E A

)
dx (8.34)

as the increase in internal energy and Conservation of energy

∫

dWi =
∫ l

0

[
∫ M

0

M̄ d M̄

E I
+

∫ N

0

N̄ d N̄

E A

]
dx

= 1

2

∫ l

0
(
N 2

E A
+ M2

E I
) dx = 0.9670 (8.35)

is therefore the internal energy at the end of the load path.
In order to calculate the external work, we assume the load to slowly increase,

Px (λ) = λ Px = λ · 1 Pz(λ) = λ Pz = λ · 1 0 ≤ λ ≤ 1 . (8.36)
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so that the external work is [2], p. 333,

∫

dWe =
∫ u

0
λ · 1 dū +

∫ w

0
λ · 1 dw̄ =

∫ 1

0
(ū,λ +w̄,λ ) dλ . (8.37)

This integral is best evaluated numerically, Δ = 0.05,

∫

dWe =
∫ 1

0

[ ū(λ + Δ) − ū(λ)

Δ
+ w̄(λ + Δ) − w̄(λ)

Δ

]
dλ (8.38)

and with Simpson’s rule we obtain

∫

dWe = 0.9669 , (8.39)

which matches the internal energy quite well.1

8.5 Geometrically Nonlinear Kirchhoff Plate

The formulation is the same as for the geometrically nonlinear beam, it only consists
of amore extensive set of equations, and sowe refer interested readers to pp. 325–328
in [2].

8.6 Nonlinear Elasticity Theory

In the triplet {u, E, S} the tensor E is the Green-Lagrange strain tensor and S is the
second Piola-Kirchhoff stress tensor. We assume the material to be hyperelastic, i.e.
there exists a strain energy function W such that S = ∂W/∂E.

In the presence of volume loads p the elastic state � = {u, E, S} at each point x
of the undeformed body satisfies the system2

E(u) − E = 0
1

2
(ui , j +u j ,i +uk,i uk, j ) − εi j = 0 (8.40a)

W ′(E) − S = 0
∂W

∂εi j
− σi j = 0 (8.40b)

−div(S + ∇uS) = p − (σi j + ui ,k σk j ), j = pi (8.40c)

1Since E A = 1 the example is of course academic because the compression exceeds the length of
the bar.
2In linear 1-D problems σ = E ε, W(E) = 0.5 E ε2.




