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2.15 Monopoles and Dipoles

The influence function for the slope w′ of a beam is generated by a single moment
M = 1 or dipole

M = lim
Δx→0

1

Δx
Δx = 1 , (2.118)

a pair of equal-sized but opposite forces ±1/Δx whose distance Δx shrinks to zero.
A single force alone, in contrast, is a monopole. The influence function for a

deflection w(x) is the reaction to a monopole.
Influence functions which are generated by monopoles sum, they resemble dents

or sinks, see Figs. 2.42 and 2.45a. Everything which falls into the sink increases the
deflection of the plate.

Dipoles instead generate shear deformations, which are sensitive to imbalances,
they differentiate, see Figs. 2.42 and 2.45b.

Monopoles integrate and dipoles differentiate.

Each of the four influence functions in Fig. 2.42 is of either type:

• G.F. for deflections and moments sum.
• G.F. for rotations, stresses and shear forces differentiate

The influence function for the shear force V is generated by a dipole, while
the influence function for the bending moment M is generated by two moments
M = ±1/Δx , which rotate the beam inwards, and so generate a symmetric deflection
with a kink at the source point.1

The maximum result is obtained if the load and the influence function are of the
same type (symmetric—symmetric or antisymmetric—antisymmetric) and the min-
imum effect when they are of opposite type, see Fig. 2.43.

The difference between monopoles and dipoles is the reason, why it is easier to
approximate displacements and bending moments than stresses and shear forces. It
is the difference between numerical integration and numerical differentiation,
see Fig. 2.44.

Remark 2.6 Influence functions for support reactions integrate, though the support
reactions are normal forces (stresses) or shear fores, and we therefore would expect
the influence functions to differentiate. But if the support sits on a rigid soil, the

1To be precise: the correct sequence is: monopole—dipole—quadrupole—octopole, corresponding
to the finite differences of w,w′, M, V , see Fig. 9.11 page 446, but for our purposes the simple
division: monopole—dipole or sum—differentiate will do.
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Fig. 2.42 Influence functions are generated by monopoles (on the left) or dipoles (on the right),
influence function for a deflection, b rotation w,x , c moment mxx , d shear force qx
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Fig. 2.43 Upper row influence functions for a the moment and b the shear force at the midpoint,
c and d moments and shear forces under e symmetric and f antisymmetric load

motion is hindered by the foundation and so the other part must go all the way—
alone—to effect a unit dislocation, [[u]] = 1, and so the influence function becomes
a one-sided integral.

Remark 2.7 Not all influence functions tend to zero. If parts of the structure (after
the installation of a hinge) can perform rigid body motions influence functions may
blow up, see Fig. 2.46b.

Remark 2.8 The speed with which influence functions decay, depends on the order
of the derivative of the target value, which would be 0, 1, 2, 3 in a beam

w(x), w′(x), M(x) = −E I w′′(x), V (x) = −E I w′′′(x) . (2.119)

The lower the order, the more evenly the influence function spreads out, and the
more slowly it decays, as the influence function for the deflection w(x) of a plate
demonstrates, see Fig. 2.45 a. The influence function for the shear force qx instead is
a tightly packed dipole, see Fig. 2.45b, two infinitely large peaks, but the downswing
from these peaks is equally steep and fast.

The particular behavior, of course, also depends on the support conditions, see
Figs. 2.47 and 2.48, because structures with large overhanging parts (cantilevers)
play a special role in this regard. Such parts can swing widely and they can easily
blow up any influence function.

Influence functions for forces in statically determinate systems also deserve a
remark. Since such systems are kinematic (after the installation of a hinge), deforma-
tions can develop unhindered because no energy is consumed. Nothing can prevent
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Fig. 2.44 Increasing complexity in a plate, a deflection w, b moments myy , c shear forces qy



2.15 Monopoles and Dipoles 133

Fig. 2.45 Plate and influence functions, a for a deflection (G0 = O(r2 ln r)), b a shear force
(G3 = O(r−1)), c a moment (G2 = O(ln r)), see (6.36) page 383 last column of the matrix
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Fig. 2.46 a Gerber beam, b influence functions for a moment M ; not all influence functions decay!

the influence function for the moment in a cantilever beam from running the part to
the right of the source point under 45◦ into the sky, because it costs nothing. This is
the reason why kinematic structures collapse so easily, since no energy is needed to
trigger the collapse.

Statically indeterminate systems instead dampen the propagation of influence
functions, while statically determinate systems lack such a barrier.

2.16 The Leaning Tower of Pisa

The symmetry and antisymmetry, whichwe observe in influence functions, also plays
a prominent role in the leaning tower of Pisa.

The problem is that the soil stiffness under the tower is not uniform, and so the
influence function G1(y, x) for the rotation of the foundation plate is not perfectly
antisymmetric, but rather has a bias towards the softer side, and so the tower leans
to this side, see Fig. 2.49,

w′(xc) =
∫ l

0
G1(y, xc) p(y) dy . (2.120)
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Fig. 2.47 Cantilever plate, a influence functions for a shear force qx , and b the moment mxx ; it
is amazing how with a “numerical” dislocation and a “numerical” kink it is possible to generate a
nearly uniform dislocation and 45◦ rotations. How close can you come to the source point before
the singularity, O(1/r) in figure a and O(ln r) in figure b, dominates the scene?
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Fig. 2.48 Bridge, a influence function for the moment mxx , and b for the shear force qx at the
midpoint; the influence function for the integral of qx across the bridge should be identical with the
beam solution

An antisymmetric kernel equals a balance, but if the balance is misaligned, even
a perfectly symmetric load will rotate the balance. So, a zero rotation requires a
perfectly antisymmetric kernel and a perfectly symmetric load.

Exercise: Given a non-perfect antisymmetric kernel, find the load p so that the
rotation is zero.
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Fig. 2.49 The soil under the
leaning tower of Pisa

2.17 Influence Functions for Integral Values

Oscillations near singular points are best smoothed out by averaging, by integrating
over a short stretch.

Why this helps becomes clear when we look at the influence functions. The
influence function for the stress σyy at a point is a spread of the source point in
vertical direction, see Fig. 2.50b, but no mesh can simulate such a spread. If we
“stretch” the point, turn it into a short line 
, and calculate with the mean of the
stresses along this line

σ∅

yy = 1




∫ 


0
σyy ds , (2.121)

the influence function is a simultaneous shift of all points on the line in vertical
direction, and such a displacement is easier to approximate with finite elements than
a dislocation at one point. This is the reason why averaging gives better results.

If, as in Fig. 2.50a, the line is a complete cut through the plate, the integral of the
stresses

Ny =
∫ l

0
σyy dx (2.122)

is even exact, since this lift lies in V+
h (= Vh + rigid body motions).

The beneficial effect of an integral measure on the bending moment in a plate is
also evident in Fig. 2.51.

Influence functions of integral values are based on the same equation K g = j as
before. If J (w) is the mean value of the deflection in an element (xa, xb),

J (w) = 1

(xb − xa)

∫ xb

xa

w(x) dx , (2.123)
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Fig. 2.50 Plate, a influence function for Ny (exact above the first row of elements), b influence
function for σyy at a point

the ji are the mean values of the ϕi

ji = 1

(xb − xa)

∫ xb

xa

ϕi (x) dx . (2.124)

The influence functions for mean values of stresses are particularly simple to
generate. The average stress σ∅

xx in an element Ωe is the integral

σ∅

xx = 1

|Ωe|
∫

Ωe

σxx dΩ = E

|Ωe|
∫

Ωe

(εxx + ν εyy) dΩ , (2.125)

but since εxx = ux ,x and εyy = uy,y , the domain integral can be replaced by a bound-
ary integral over the edge Γe of the element
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Fig. 2.51 Plate, a influence function for myy , and b for the integral of myy , [4]

σ∅

xx = E

|Ωe|
∫

Ωe

(εxx + ν εyy) dΩ = E

|Ωe|
∫

Γe

(ux nx + ν uy ny) ds , (2.126)

and because the influence function for the displacement ux or uy of a boundary
point x is generated by a single force Px = 1 or Py = 1 placed at x, the influence
function for the boundary integral is the displacement field generated by horizontal
and vertical line forces, E/|Ωe| · nx and E/|Ωe| · ny , along the edge of the element
Γe, see Fig. 2.52.

An equations says it directly: Let G∅ the reaction of the plate to the edge forces
E/|Ωe| · nx and νE/|Ωe| · ny in Fig. 2.52, which we write as vector t , and let u the
displacement field of the plate then

W1,2 =
∫

Ω

G∅
• p dΩ y =

∫
Γ

t • u ds y = W2,1 , (2.127)

and the second integral is identical with (2.126).
The mean stresses in a plate held fixed at its edge are therefore zero, since the

edge forces which generate the influence function cannot displace the fixed edge.
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Fig. 2.52 Influence function for the average value of σxx in an element, a the “Dirac delta” consists
of horizontal forces along the vertical edge and (small, ν-fold) vertical forces along the horizontal
edge of Ωe, b the horizontal displacements of the Green’s function, here plotted in z-direction

The same is true with slabs: The mean values of the moments of a slab, clamped
on all sides, are zero. In the 1-D case we have encountered this phenomenon already
in Chap. 1, Eqs. (1.31) and (1.32).

Rule of thumbs: When the edge is fixed the average values of the derivatives are
zero.

The stresses in the middle of an element are the most accurate. On the one hand,
because the midpoint is the point furthest away from the jumps at the edge, and on
the other hand because a dislocation at the midpoint is “relatively” easy to generate.
With bilinear elements it is even so, that the influence functions for the stresses at the
center and the mean values of the stresses coincide [4]. The stresses at the midpoint
of a bilinear element are mean values.
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Fig. 2.53 Relations between
integrals and end values

Integration by parts is also a statement about the mean value of the derivative of
a function

1

l

∫ l

0
u′(x) dx = 1

l
(u(l) − u(0)) . (2.128)

This is why the integral of the normal force N = E A u′(x) is proportional to the
relative displacement of the beam ends

∫ l

0
N (x) dx = E A (u(l) − u(0)) , (2.129)

and the integral of M(x) = −E I w′′(x) is a measure of the relative rotations of the
end points, see Fig. 2.53,

∫ l

0
M(x) dx = −E I (w′(l) − w′(0)) . (2.130)
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The integral of the shear force

∫ l

0
V (x) dx = M(l) − M(0) (2.131)

equals the difference between the moments, and the distributed load p = −V ′ =
E I w I V is responsible for the difference between the shear forces

∫ l

0
p dx = −(V (l) − V (0)) . (2.132)

2.18 Influence Functions Integrate

Differentiating, w → w′ → w′′ → . . . we move forward and integrating we move
back. The influence function G1(y, x) for the normal force integrates the load once

N (x) =
∫ l

0
G1(y, x) p(y) dy (′′) → (′) , (2.133)

and the influence function G0(y, x) for the displacement u(x) integrates it twice

u(x) =
∫ l

0
G0(y, x) p(y) dy (′′) → ( ) . (2.134)

Fig. 2.54 illustrates the situation. The deflectionw of the cantilever beam is the triple
indefinite integral of the shear force V = −E I w′′′

w = −
∫ ∫ ∫

V dx dx dx = −
∫ ∫ ∫

P dx dx dx , (2.135)

and this explains the 
3 in the end deflection

w(
) = P 
3

3 E I
. (2.136)

When a moment M = −E I w′′ is applied we see an 
2

w(
) = M 
2

2 E I
, (2.137)

while a distributed load p produces the deflection
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Fig. 2.54 Deflection of a cantilever beam due to a a single force—integrate three times, b a
moment—integrate two times—and c distributed load—integrate four times

Fig. 2.55 Grid

w(
) = p 
4

8 E I
, (2.138)

where the 
4 matches the fourth-order derivative E I w I V = p.
We find the l3 of (2.136) also in the formula

Pa

Pb
= l3b

l3a
, (2.139)

which regulates how a point load P = Pa + Pb is split between two beams, see
Fig. 2.55.
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A stiffness matrix, K u = f , differentiates, and therefore we find the “inverse”
factor E I/ l3 and E A/ l up front in the case of a beam and a bar element respectively.

On moving back it is important to know how we arrived at p. Differentiate the
function u(x) = sin(π x/ l) two times and four times respectively

−u′′ = (
π

l
)2 sin(π x/ l) = p(x) (2.140)

E I uI V = (
π

l
)4 sin(π x/ l) = p̄(x) . (2.141)

In the first case it is the response of a rope to a load p(x), and in the second case it
is the deflection of a beam which carries a load p̄(x).

To calculate u at the point x = l/2 by integrating the right sides p(x) and p̄(x)

different influence functions are required, although we ask for the same value,
u(l/2) = sin(0.5 · π). We must know which operator created p. Where do the data
come from?

2.19 St. Venant’s Principle

According to this principle “the difference between the effects of two different but
statically equivalent loads becomes very small at sufficiently large distances from
load” [5].

The reason is simple: Effects spread via influence functions, which are scalar
products of the load p and a kernel G(y, x), and the kernel (usually) tends to zero
with increasing distance from the source point. If the distance is large enough, a
one-point quadrature is good enough and the load can be replaced by its resultant.
But equivalent loads have the same resultant, and therefore an exchange will have
no effect at a large enough distance.

The effects of antisymmetric loads, having zero resultants, in particular subside
quickly. And if an antisymmetric load meets a “flat” influence function—no slope—
the influence is zero from the start, symmetric × antisymmetric = 0.

Antisymmetric loads“differentiate" the influence functions.

This effect plays a significant role in the case of the forces f + in Chap. 5.

Fourier

A closely related topic are the effects of oscillating loads, since these have the ten-
dency to cancel each other out, see Fig. 2.56. This is why Fourier series and the
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Fig. 2.56 Membranewithmovable edge. The shorter thewave length of the induced edge deflection
is, themore rapidly it decreases, an effect which is due to the influence functions. Rapidly oscillating
line loads on a plate generate probably zero displacements at one meter distance
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JPEG method2 succeed. The higher frequencies in a Fourier series, the short wave
oscillations do not get very far.

Decomposing a signal into its frequencies is one thing, but—no less important—is
that effects are the superposition of the signal with influence functions.

The idea of the discrete Fourier transform is to sort a vector by its wave compo-
nents and to omit the short waves, the high frequencies. The most important vector
is the one-vector u = {1, 1, 1, . . .}T , whose integral is simply the area of the influ-
ence function. This vector is followed by vectors, which resemble “frozen” waves of
increasing frequency. Their effect (= integral) tends to zerowith increasing frequency,
because they are extinguished when superposed with the influence functions.

The real “trick” of the discrete Fourier transform is the clever basis ofwavevectors,
“broad brushstrokes”, which is much more effective than the “pointillist-like” basis
of Euclidean unit vectors ei . If you want to transmit a vector u = ∑64

i=1 ui ei , you
have to send all 64 components ui , you may not omit one ui , (it could just be the
brightest pixel). Fourier instead can limit himself to the first 10 components without
it being too obvious at the other end of the line that something is missing.

2.20 Second-Order Theory

Second-order beam theory is based on

E I w I V (x) + P w′′(x) = p(x) (2.142)

where P is the compressive force in the beam and p(x) is the distributed load, see
Fig. 2.57a. This is a nice fourth-order linear self-adjoint differential equation with
constant coefficients, but the problem lies in the coefficient P , which is load case
dependent as can be seen in Fig. 2.57. Each P requires a different influence function
for w(x) and the section forces.

The more P nears the buckling load Pcrit , the more the influence function for the
rotation of the beam’s end, Fig. 2.57 b, or for the deflection, Fig. 2.57c, bulge out.

In principle, second-order theory is a nonlinear problem, where the longitudinal
displacement u(x) and the lateral displacement w(x) are linked in the system

−E A

(
u′ + 1

2
(w′)2

)′
= px (2.143a)

E I w I V −
(

E A(u′ + 1

2
(w′)2) w′

)′
= pz . (2.143b)

2In the JPEG method (DCT) a black and white image is divided into blocks of 8×8 pixels and the
grayscales in the 64 pixels of a block form a vector, to which we apply a Fourier transform and we
leave out the high frequencies.




