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The principle of minimum potential energy naturally leads to the same system, since
Ku − f = 0 guarantees δΠ(u) = Ku − f = 0, i.e. Π(u) has a horizontal tangent
at the lowest point, and this in each direction ui .

9.10 Weak Solution

Given the boundary value problem of a rope

−H w′′(x) = p(x) w(0) = w(l) = 0 , (9.69)

we determine the FE-solution wh(x) = ∑
j w j ϕ j (x) by requiring

∫ l

0
H w′

h ϕ′
i dx =

∫ l

0
p ϕi ϕi dx for all ϕi ∈ Vh . (9.70)

The solution of the boundary value problem (9.69) is called a strong solution and
the solution of the variation problem (9.70) is called a weak solution.

This distinction is usually explained by saying a weak solution does not have to be
twice differentiable, as in −H w′′ = p, but only once, as the w′ in the strain energy
product.

The following interpretation, though, seems more appropriate. In mathematics
there is the concept of weak convergence. It is an indirect proof for a sequence of
functions fn(x) to converge to a target function f (x). The test fn(x) → f (x) is done
against a set of control functions ϕi (x), and the sequence fn(x) is said to converge
weakly to f (x) if

lim
n→∞

∫ l

0
fn(x) ϕi (x) dx =

∫ l

0
f (x) ϕi (x) dx for all ϕi . (9.71)

Weak convergence is like the convergence of functionals. Every function fn(x) can
be equated to a functional Jn(.)

Jn(ϕi ) =
∫ l

0
fn(x) ϕi (x) dx , (9.72)

and weak convergence means, the functionals Jn(.) converge towards the target
functional

J (ϕi ) =
∫ l

0
f (x) ϕi (x) dx , (9.73)

in the sense of (9.71), the limit of the sequence Jn(.) is “shake equivalent” to J (.).
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And this terminology fits exactly. The FE-solution is a weak solution since its
agreement with the exact solution is not controlled by the differential equation, but
it is controlled indirectly by i = 1, 2, . . . “shake tests”

lim
h→0

a(uh, ϕi ) = a(u, ϕi ) for all ϕi . (9.74)

Because of δWi = δWe this is identical to

lim
h→0

∫ l

0
ph ϕi dx =

∫ l

0
p ϕi ϕi dx for all ϕi (9.75)

i.e. the equivalence of the external virtual work. In practice, of course, the finite
elements never reach the limit h → 0 and only a finite number of tests is performed,
since there are only a finite number of shape functions ϕi on a mesh.

The finite element method can be seen as a method of replacing a functional
J (δu) = (p, δu) with a functional Jh(δu) = (ph, δu), or, if you have infinite
patience, h → 0, with a sequence of functionals Jh(δu) = (ph, δu).

The practical significance of the concept of a weak solution becomes apparent
when we watch a market woman, see Fig. 9.5, since she also draws conclusions
indirectly. She has to solve the equation

Pl · hl = Pr · hr , (9.76)

which means, as she knows, that at every turn δϕ of the balance beam, the work on
the left and right side are the same

Pl · hl = Pr · hr ⇒ Pl · hl · tan tan δϕ = Pr · hr · tan δϕ , (9.77)

and so she concludes, by wiggling the balance, indirectly, arguing “backwards”

Pl · hl = Pr · hr ⇐ Pl · hl · tan δϕ = Pr · hr · tan δϕ . (9.78)

The same is done by the toolmaker, who rolls a cylinder back and forth with his
fingers, see Fig. 9.6, since he knows: If the cylinder has a perfect circular shape,
the center of gravity does not change its height above the table when the cylinder is
rotated. If the test fails, if his fingers feel a slight wobble, it is not a perfect cylinder.

The apprentice who is supposed to grind a cylinder out of a square iron, does it
like the finite elements. At the start the square iron is equivalent to a cylinder with
respect to all rotations δϕ, which are a multiple of 90◦, the center of gravity does
not change its height. By grinding more and more edges (n) into the profile, the
apprentice increases the test space, V4 → V8 → V16 . . .
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Fig. 9.5 The market woman checks the equilibrium with the principle of virtual displacements

Fig. 9.6 The tool maker checks the excentricity by rolling the cylinder across the table

Vn = {all multiples of δϕ = 360

n
} n = 4, 8, 16 . . . edges (9.79)

and he so approximates the shape indirectly (via rotational equivalence), see Fig. 9.7
[2].

Equivalence is the key term in FE-analysis. The FEM does not solve the original
load case but an equivalent load case. An equivalence relation means if a ∼ b and
b ∼ c also a ∼ c, and so

p ∼ ϕi and ph ∼ ϕi ⇒ p ∼ ph . (9.80)

In the finite element method this equivalence is “finite”, is established only with
respect to a finite set of test functions ϕi , i = 1, 2, . . . n.

If we compare the length of two boards A and B via a folding rule, we use an
equivalence relation. The boards have the same length, are equivalent, if they are in
identical relations with the folding rule. Equivalence is indirect equality, is like weak
convergence, and it leads to a true identity, A ≡ B, (all places after the decimal point
are equal), if the relation passes all tests, and also the test with the Urmeter in Paris...
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Fig. 9.7 The octogon is
equivalent to a cylinder with
respect to all rotations,
which are a multiple of 45◦

Remark 9.1 The concept of weak convergence also includes the difference between
weak and strong boundary conditions. Geometric boundary conditions are strong
boundary conditions, like w = 0, since they are satisfied by all shape functions
ϕi ∈ Vh , while a static boundary condition like vn = 0 (zero Kirchhoff shear) at a
free edge of a plate, is guaranteed only in the integral mean—in the weak sense—
(vn, ϕi ) = 0, but not pointwise. This is why static boundary conditions are called
weak boundary conditions.

9.11 Variation and Green’s First Identity

The potential energy of a bar, held fixed on the left, u(0) = 0, with a free end,
N (l) = 0, and carrying a load p is

Π(u) = 1

2

∫ l

0

N 2

E A
dx −

∫ l

0
p u dx = 1

2
a(u, u) − (p, u) . (9.81)

In the equilibrium position u the first variation of Π(u) should be zero.
The value of Π at a neighboring point u + ε δu is

Π(u + εδu) = 1

2
a(u + εδu, u + εδu) − (p, u + εδu)

= 1

2
a(u, u) + ε · a(u, δu) + ε2 · 1

2
a(δu, δu) − (p, u) − ε · (p, δu)

(9.82)

and so the first variation

δΠ(u, δu) = d

dε
Π(u + εδu)|ε=0 = a(u, δu) − (p, δu) (9.83)

is identical to
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G (u, δu) =
∫ l

0
p δu(x) dx −

∫ l

0

N δN

E A
dx = (p, δu) − a(u, δu) = 0 (9.84)

since thework done on the boundary [. . .] is zero because of N (l) = 0 and δu(0) = 0.

The first variation of the potential energy is Green’s first identity.

9.12 The Basic Functional (Hu-Washizu)

In [3] we introduced the basic functional ΠH and we showed how it can be derived
from Green’s second identity. We call it basic since all other functionals are modi-
fications of this functional, in particular the potential energy and the complemen-
tary potential energy. We want to use this result to show that the potential energy,
Π(u) = 1/2 a(u, u), is positive if a support settles.

To keep the algebra simple, we consider a bar. By integrating the last integral in
Green’s second identity by part

B (u, δu) =
∫ l

0
−E Au′′δu dx + [N δu − u δN ]l0 −

∫ l

0
u(−E Aδu′′) dx

︸ ︷︷ ︸
int. by parts

= 0

(9.85)

we can make a step back in the direction of a(u, δu), and we thus obtain

V (u, δu) =
{∫ l

0
−E Au′′δu dx + [N δu − u δN ]l0

}
+ [uδN ]l0 − a(u, δu) = 0 .

(9.86)

The curly brackets contain the “rest” of Betti, the untouched part.
Next, we replace all terms of u inside the curly brackets with their data as far as

they appear in the boundary value problem, remove the brackets and delete all terms
which cancel. The resulting expression is the first variation of the basic functional
ΠH (H as in Hu-Washizu).

Consider for example the boundary value problem

−E Au′′ = p u(0) = 0 u(l) = Δ . (9.87)

Applying the above scheme we get

V (u, δu) =
∫ l

0
p δu dx + [Nδu]l0 − ΔδN (l) + [u δN ]l0 − a(u, δu) = 0 ,

(9.88)




